Solved

Which of the Following Series Are Convergent, but Not Absolutely n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt [ 3 ] { n } }

Question 339

Multiple Choice

Which of the following series are convergent, but not absolutely convergent?
1) n=1(1) nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt [ 3 ] { n } }
2) n=1(1) n1nlnn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { \sqrt { n } \ln n }
3) n=1cosn2n\sum _ { n = 1 } ^ { \infty } \frac { \cos n } { 2 ^ { n } }


A) None
B) 1
C) 2
D) 3
E) 1, 2
F) 1, 3
G) 2, 3
H) 1, 2, 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions