Solved

Suppose That We Model Populations of Predators and Preys (In dxdt=2x1.2xydydt=y+0.9xy\begin{array} { l } \frac { d x } { d t } = 2 x - 1.2 x y \\\frac { d y } { d t } = - y + 0.9 x y\end{array}

Question 20

Multiple Choice

Suppose that we model populations of predators and preys (in millions) with the system of differential equations: dxdt=2x1.2xydydt=y+0.9xy\begin{array} { l } \frac { d x } { d t } = 2 x - 1.2 x y \\\frac { d y } { d t } = - y + 0.9 x y\end{array} Find the equilibrium solution.


A) x=109,y=35x = \frac { 10 } { 9 } , y = \frac { 3 } { 5 }
B) x=910,y=35x = \frac { 9 } { 10 } , y = \frac { 3 } { 5 }
C) x=59,y=310x = \frac { 5 } { 9 } , y = \frac { 3 } { 10 }
D) x=53,y=109x = \frac { 5 } { 3 } , y = \frac { 10 } { 9 }
E) x=109,y=53x = \frac { 10 } { 9 } , y = \frac { 5 } { 3 }
F) x=103,y=95x = \frac { 10 } { 3 } , y = \frac { 9 } { 5 }
G) x=39,y=35x = \frac { 3 } { 9 } , y = \frac { 3 } { 5 }
H) x=35,y=109x = \frac { 3 } { 5 } , y = \frac { 10 } { 9 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions