Solved

Suppose a Population Growth Is Modeled by the Logistic Equation dPdt=0.01P0.0001P2\frac { d P } { d t } = 0.01 P - 0.0001 P ^ { 2 }

Question 10

Multiple Choice

Suppose a population growth is modeled by the logistic equation dPdt=0.01P0.0001P2\frac { d P } { d t } = 0.01 P - 0.0001 P ^ { 2 } with P(0) = 10. Find the formula for the population after t years.


A) P(t) =1001+9e0.01tP ( t ) = \frac { 100 } { 1 + 9 e ^ { - 0.01 t } }
B) P(t) =1001+10e0.01tP ( t ) = \frac { 100 } { 1 + 10 e ^ { - 0.01 t } }
C) P(t) =1001+e0.01tP ( t ) = \frac { 100 } { 1 + e ^ { - 0.01 t } }
D) P(t) =101+9e0.01tP ( t ) = \frac { 10 } { 1 + 9 e ^ { - 0.01 t } }
E) P(t) =101+e0.01tP ( t ) = \frac { 10 } { 1 + e ^ { - 0.01 t } }
F) P(t) =10019e0.01tP ( t ) = \frac { 100 } { 1 - 9 e ^ { - 0.01 t } }
G) P(t) =1001+9e0.1tP ( t ) = \frac { 100 } { 1 + 9 e ^ { - 0.1 t } }
H) P(t) =100e0.01tP ( t ) = 100 e ^ { 0.01 t }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions