Solved

Give a Definite Integral Representing the Length of the Curve y=1x,1x2y = \frac { 1 } { x } , 1 \leq x \leq 2

Question 131

Multiple Choice

Give a definite integral representing the length of the curve y=1x,1x2y = \frac { 1 } { x } , 1 \leq x \leq 2 .


A) 121+1x2dx\int _ { 1 } ^ { 2 } \sqrt { 1 + \frac { 1 } { x ^ { 2 } } } d x
B) 121+1x4dx\int _ { 1 } ^ { 2 } \sqrt { 1 + \frac { 1 } { x ^ { 4 } } } d x
C) 121+(lnx) 2dx\int _ { 1 } ^ { 2 } \sqrt { 1 + ( \ln x ) ^ { 2 } } d x
D) 121+1xdx\int _ { 1 } ^ { 2 } \sqrt { 1 + \frac { 1 } { x } } d x
E) 121x2dx\int _ { 1 } ^ { 2 } \frac { 1 } { x ^ { 2 } } d x
F) 141+1x4dx\int _ { 1 } ^ { 4 } \sqrt { 1 + \frac { 1 } { x ^ { 4 } } } d x
G) 12x1+1x2dx\int _ { 1 } ^ { 2 } x \sqrt { 1 + \frac { 1 } { x ^ { 2 } } } d x
H) 141x4dx\int _ { 1 } ^ { 4 } \frac { 1 } { x ^ { 4 } } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions