Solved

Let f(x)=0xsintt2+1dt. Find f(x)f ( x ) = \int _ { 0 } ^ { x } \frac { \sin t } { t ^ { 2 } + 1 } d t . \text { Find } f ^ { \prime } ( x )

Question 92

Multiple Choice

Let f(x) =0xsintt2+1dt. Find f(x) f ( x ) = \int _ { 0 } ^ { x } \frac { \sin t } { t ^ { 2 } + 1 } d t . \text { Find } f ^ { \prime } ( x )


A) sintt2+1\frac { \sin t } { t ^ { 2 } + 1 }

B) sintt2+1- \frac { \sin t } { t ^ { 2 } + 1 }
C) cosxx2+1\frac { \cos x } { x ^ { 2 } + 1 }
D) sinxx2+1- \frac { \sin x } { x ^ { 2 } + 1 }
E) sinxx2+1\frac { \sin x } { x ^ { 2 } + 1 }

F) cosxx2+1- \frac { \cos x } { x ^ { 2 } + 1 }

G) cosx2x\frac { \cos x } { 2 x }

H) cosx2x- \frac { \cos x } { 2 x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions