Solved

Let f(x)=3x2sintt2+1dt. Find f(x)f ( x ) = \int _ { 3 x } ^ { 2 } \frac { \sin t } { t ^ { 2 } + 1 } d t . \text { Find } f ^ { \prime } ( x )

Question 26

Short Answer

Let f(x)=3x2sintt2+1dt. Find f(x)f ( x ) = \int _ { 3 x } ^ { 2 } \frac { \sin t } { t ^ { 2 } + 1 } d t . \text { Find } f ^ { \prime } ( x )
A) sin3x3x2+1\frac { \sin 3 x } { 3 x ^ { 2 } + 1 }

B) 3sin3x3x2+1- \frac { 3 \sin 3 x } { 3 x ^ { 2 } + 1 }
C) cosxx2+1\frac { \cos x } { x ^ { 2 } + 1 }
D) 3sin3x9x2+1- \frac { 3 \sin 3 x } { 9 x ^ { 2 } + 1 }
E) 3sin3x9x2+1\frac { 3 \sin 3 x } { 9 x ^ { 2 } + 1 }
F) cos3x9x2+1- \frac { \cos 3 x } { 9 x ^ { 2 } + 1 }

G) cosx2x\frac { \cos x } { 2 x }

H) cosx2x- \frac { \cos x } { 2 x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions