Solved

If f(x)=xx1, find a formula for f(n)(x)f ( x ) = \frac { x } { x - 1 } , \text { find a formula for } f ^ { ( n ) } ( x )

Question 97

Multiple Choice

If f(x) =xx1, find a formula for f(n) (x) f ( x ) = \frac { x } { x - 1 } , \text { find a formula for } f ^ { ( n ) } ( x )


A) f(n) =(1) nn!(x1) (n+1) f ^ { ( n ) } = ( - 1 ) ^ { n } n ! ( x - 1 ) ^ { - ( n + 1 ) }

B) f(n) =n!(x1) (n+1) f ^ { ( n ) } = n ! ( x - 1 ) ^ { - ( n + 1 ) }
C) f(n) =(1) nn!(x1) nf ^ { ( n ) } = ( - 1 ) ^ { n } n ! ( x - 1 ) ^ { - n }
D) f(n) =(1) nn!(x1) (n1) f ^ { ( n ) } = ( - 1 ) ^ { n } n ! ( x - 1 ) ^ { - ( n - 1 ) }
E) f(n) =(1) n+1n!(x1) (n+1) f ^ { ( n ) } = ( - 1 ) ^ { n + 1 } n ! ( x - 1 ) ^ { - ( n + 1 ) }
F)
f(n) =(1) nn!(x1) n+1f ^ { ( n ) } = ( - 1 ) ^ { n } n ! ( x - 1 ) ^ { n + 1 }

G) f(n) =n!(x1) n+1f ^ { ( n ) } = n ! ( x - 1 ) ^ { - n + 1 }

H) f(n) =(1) nn!(x+1) (n+1) f ^ { ( n ) } = ( - 1 ) ^ { n } n ! ( x + 1 ) ^ { - ( n + 1 ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions