Solved

Let F(x,y,z)=(x3+yz)i+x2yj+xz2k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y z \right) \mathbf { i } + x ^ { 2 } y \mathbf { j } + x z ^ { 2 } \mathbf { k }

Question 138

Short Answer

Let F(x,y,z)=(x3+yz)i+x2yj+xz2k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y z \right) \mathbf { i } + x ^ { 2 } y \mathbf { j } + x z ^ { 2 } \mathbf { k } and let S be the surface of the solid bounded by the spheres x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions