Solved

Let And Let S Be the Boundary Surface of the Solid

Question 51

Short Answer

Let F(x,y,z)=(x2+yex)i+(y2+zex)j+(z2+xey)k\mathbf { F } ( x , y , z ) = \left( x ^ { 2 } + y e ^ { x } \right) \mathbf { i } + \left( y ^ { 2 } + z e ^ { x } \right) \mathbf { j } + \left( z ^ { 2 } + x e ^ { y } \right) \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y21,0zx+2}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } 1,0 \leq z \leq x + 2 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions