Solved

Let S Be the Parametric Surface x=rcosθ,y=rsinθ,z=θ,0r1,0θπ2x = r \cos \theta , y = r \sin \theta , z = \theta , 0 \leq r \leq 1,0 \leq \theta \leq \frac { \pi } { 2 }

Question 150

Short Answer

Let S be the parametric surface x=rcosθ,y=rsinθ,z=θ,0r1,0θπ2x = r \cos \theta , y = r \sin \theta , z = \theta , 0 \leq r \leq 1,0 \leq \theta \leq \frac { \pi } { 2 } . Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=yi+xj+zk\mathbf { F } ( x , y , z ) = - y \mathbf { i } + x \mathbf { j } + z \mathbf { k } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions