Solved

Evaluate the Line Integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r }

Question 80

Short Answer

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y,z)=x2i+xyj+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + x y \mathbf { j } + z ^ { 2 } \mathbf { k } , and the curve CC is given by the vector function r(t)=sinti+costj+t2k,0tπ2\mathbf { r } ( t ) = \sin t \mathbf { i } + \cos t \mathbf { j } + t ^ { 2 } \mathbf { k } , \quad 0 \leq t \leq \frac { \pi } { 2 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions