Solved

Show That At (12,0)\left( \frac { 1 } { \sqrt { 2 } } , 0 \right)

Question 193

Essay

Show that at (12,0)\left( \frac { 1 } { \sqrt { 2 } } , 0 \right) , the equation x2+12y2+13z2=1x ^ { 2 } + \frac { 1 } { 2 } y ^ { 2 } + \frac { 1 } { 3 } z ^ { 2 } = 1 defines ZZ implicitly as a function of xx and yy , and then compute δzδx(12,0,32)\frac { \delta z } { \delta x } \left( \frac { 1 } { \sqrt { 2 } } , 0 , \sqrt { \frac { 3 } { 2 } } \right) and δzδy(12,0,32)\frac { \delta z } { \delta y } \left( \frac { 1 } { \sqrt { 2 } } , 0 , \sqrt { \frac { 3 } { 2 } } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions