Solved

Find the Unit Tangent Vector T(t) to the Curve R (sint,2t,t2)\left( \sin t , 2 t , t ^ { 2 } \right)

Question 106

Multiple Choice

Find the unit tangent vector T(t) to the curve r (t) = (sint,2t,t2) \left( \sin t , 2 t , t ^ { 2 } \right) when t = 0.


A) (25,15,0) \left( - \frac { 2 } { \sqrt { 5 } } , - \frac { 1 } { \sqrt { 5 } } , 0 \right)

B) (25,15,0) \left( \frac { 2 } { \sqrt { 5 } } , - \frac { 1 } { \sqrt { 5 } } , 0 \right)
C) (25,15,0) \left( - \frac { 2 } { \sqrt { 5 } } , \frac { 1 } { \sqrt { 5 } } , 0 \right)
D) (25,15,0) \left( \frac { 2 } { \sqrt { 5 } } , \frac { 1 } { \sqrt { 5 } } , 0 \right)
E) (15,25,0) \left( - \frac { 1 } { \sqrt { 5 } } , - \frac { 2 } { \sqrt { 5 } } , 0 \right)
F) (15,25,0) \left( \frac { 1 } { \sqrt { 5 } } , - \frac { 2 } { \sqrt { 5 } } , 0 \right)

G) (15,25,0) \left( - \frac { 1 } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , 0 \right)

H) (15,25,0) \left( \frac { 1 } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , 0 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions