Multiple Choice
A bakery produces both pies and cakes. Both products use the same materials (flour, sugar and eggs) and both have a setup cost ($100 for cakes, $200 for pies) . The baker earns a profit of $10 per cake and $12 per pie and can sell as many of each as it can produce. The daily supply of flour, sugar and eggs is limited. To manage the decision-making process, an analyst has formulated the following linear programming model (assume that it is possible to produce fractional pies and cakes for this example) :
Max 10x1 + 12x2 - 100y1 - 200y2
s.t. 5x1 + 10x2 ? 1000 {Constraint 1}
2x1 + 5x2 ? 2500 {Constraint 2}
2x1 + 1x2 ? 300 {Constraint 3}
My1 ? x1 {Constraint 4}
My2 ? x2 {Constraint 5}
Which of the constraints limit the amount of raw materials that can be consumed?
A) Constraint 3
B) Constraint 4
C) Constraint 5
D) Constraint 3 and 4
E) None of these.
Correct Answer:

Verified
Correct Answer:
Verified
Q18: A bakery produces both pies and
Q19: A new pizza restaurant is moving
Q20: A firm has prepared the following
Q21: Note: This problem requires the use
Q22: A BIP problem considers one yes-or-no decision
Q24: A firm has prepared the following
Q25: A firm has prepared the following
Q26: The university administration would like to
Q27: Note: This problem requires the use
Q28: Which of the following techniques or tools