Exam 8: Advanced Counting Techniques
Exam 1: The Foundations: Logic and Proofs200 Questions
Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices214 Questions
Exam 3: Algorithms52 Questions
Exam 4: Number Theory and Cryptography154 Questions
Exam 5: Induction and Recursion53 Questions
Exam 6: Counting156 Questions
Exam 7: Discrete Probability53 Questions
Exam 8: Advanced Counting Techniques128 Questions
Exam 9: Relations74 Questions
Exam 10: Graphs127 Questions
Exam 11: Trees97 Questions
Exam 12: Boolean Algebra77 Questions
Exam 13: Modeling Computation71 Questions
Select questions type
In questions , describe each sequence recursively. Include initial conditions and assume that the sequences
begin with a1.
- = the number of bit strings of length n with an even number of 0's.
(Short Answer)
4.7/5
(30)
A doughnut shop sells 20 kinds of doughnuts. You want to buy 30 doughnuts. How many possibilities are there if you want at most six of any one kind?
(Essay)
4.9/5
(33)
determine whether the recurrence relation is a linear homogeneous recurrence relation with
constant coefficients.
-
(Short Answer)
4.9/5
(31)
In questions solve the recurrence relation either by using the characteristic equation or by discovering
a pattern formed by the terms.
-
(Short Answer)
4.9/5
(39)
Find the number of strings of 0's, 1's, and 2's of length six that have no consecutive 0's.
(Short Answer)
4.9/5
(37)
If is the generating function for describe in terms of the generating function for
(Short Answer)
4.8/5
(38)
A market sells ten kinds of soda. You want to buy 12 bottles. How many possibilities are there? if you want
at most three bottles of any kind?
(Short Answer)
5.0/5
(34)
find the coefficient of in the power series of each of the function.
-
(Short Answer)
4.9/5
(29)
In questions write the first seven terms of the sequence determined by the generating function.
-cos x.
(Short Answer)
4.8/5
(33)
In questions solve the recurrence relation either by using the characteristic equation or by discovering
a pattern formed by the terms.
-
(Short Answer)
4.9/5
(33)
Assume that the characteristic equation for a homogeneous linear recurrence relation with constant coefficients Describe the form for the general solution to the recurrence relation.
(Short Answer)
4.9/5
(33)
Set up a generating function and use it to find the number of ways in which nine identical blocks can be given
to four children, if each child gets at least two blocks.
(Short Answer)
4.9/5
(40)
Find if each set Ai has 150 elements, each intersection of two sets has 80 elements, each intersection of three sets has 20 elements, and there are no elements in all four sets.
(Short Answer)
4.9/5
(40)
A market sells 40 kinds of candy bars. You want to buy 15 candy bars.
(a) How many possibilities are there?
(b) How many possibilities are there if you want at least three peanut butter bars and at least five almond
bars?
(c) How many possibilities are there if you want exactly three peanut butter bars and exactly five almond
bars?
(d) How many possibilities are there if you want at most four toffee bars and at most six mint bars?
(Short Answer)
4.9/5
(35)
In questions find a closed form for the generating function for the sequence.
-1, 0, 1, 0, 1, 0, 1, 0, . . . .
(Short Answer)
4.8/5
(39)
find the coefficient of in the power series of each of the function.
-
(Short Answer)
4.8/5
(39)
In questions solve the recurrence relation either by using the characteristic equation or by discovering
a pattern formed by the terms.
-
(Short Answer)
4.8/5
(34)
find the coefficient of in the power series of each of the function.
-
(Short Answer)
4.8/5
(28)
What form does a particular solution of the linear nonhomogeneous recurrence relation have when
(Short Answer)
4.8/5
(31)
Showing 101 - 120 of 128
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)