Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

For the partial function f:Z×ZRf : \mathbf { Z } \times \mathbf { Z } \rightarrow \mathbf { R } defined by f(m,n)=1n2m2f ( m , n ) = \frac { 1 } { n ^ { 2 } - m ^ { 2 } } , determine its domain, codomain, domain of definition, and set of values for which it is undefined or whether it is a total function.

Free
(Short Answer)
4.9/5
(38)
Correct Answer:
Verified

Z×Z,R,{(m,n)mn or mn},{(m,n)m=n or m=n}\mathbf { Z } \times \mathbf { Z } , \mathbf { R } , \{ ( m , n ) \mid m \neq n \text { or } m \neq - n \} , \{ ( m , n ) \mid m = n \text { or } m = - n \}

Suppose inflation at three precent annually. (That is , an item that costs $q.00 now will costs $1.03 next year.) ley an = the value (that is, the purchasing power ) of one dollar after n years. (a) find a recurrence relation for an . (b) what is the value of $1.00 after 20 years ? (c) what is the value of $1.00 after 80 years ? (d) if inflation were to continue at ten percent annually, find the value of $1.00 after 20 years . (e) if inflation were to continue at ten percent annually, find the value of $1.00 after 80 years .

Free
(Short Answer)
4.9/5
(30)
Correct Answer:
Verified

(a) an=an1/1.03a _ { n } = a _ { n - 1 } / 1.03
(b) a20=1/1.03200.55a _ { 20 } = 1 / 1.03 ^ { 20 } \approx 0.55
(c) a80=1/1.03800.09a _ { 80 } = 1 / 1.03 ^ { 80 } \approx 0.09
(d) 1/1.1200.151 / 1.1 ^ { 20 } \approx 0.15
(e) 1/1.1800.001 / 1.1 ^ { 80 } \approx 0.00

determine whether the set is finite or infinite. If the set is finite, find its size. - A×B, where A={1,2,3,4,5} and B={1,2,3}A \times B \text {, where } A = \{ 1,2,3,4,5 \} \text { and } B = \{ 1,2,3 \} \text {. }

Free
(Short Answer)
4.9/5
(36)
Correct Answer:
Verified

15.

Prove that AB=AˉBˉ\overline { A \cap B } = \bar { A } \cup \bar { B } by giving an element table proof.

(Short Answer)
4.8/5
(27)

determine whether the set is finite or infinite. If the set is finite, find its size. - {xxZ and x2=2}\left\{ x \mid x \in \mathbf { Z } \text { and } x ^ { 2 } = 2 \right\}

(Short Answer)
4.8/5
(47)

determine whether the given set is the power set of some set. If the set is a power set, give the set of which it is a power set. - \{\emptyset,\{\emptyset\},\{a\},\{\{a\}\},\{\{\{a\}\}\},\{\emptyset,a\},\{\emptyset,\{a\}\},\{\emptyset,\{\{a\}\}\},\{a,\{a\}\},\{a,\{\{a\}\}\},\{\{a\},\{\{a\}\}\}, \{\emptyset,a,\{a\}\},\{\emptyset,a,\{\{a\}\}\},\{\emptyset,\{a\},\{\{a\}\}\},\{a,\{a\},\{\{a\}\}\},\{\emptyset,a,\{a\},\{\{a\}\}\}\}

(Short Answer)
4.8/5
(29)

determine whether the set is finite or infinite. If the set is finite, find its size. - {xxZ and x2<10}\left\{ x \mid x \in \mathbf { Z } \text { and } x ^ { 2 } < 10 \right\}

(Short Answer)
4.9/5
(31)

determine whether the set is finite or infinite. If the set is finite, find its size. - P(A), where A is the power set of {a,b,c}\mathcal { P } ( A ) \text {, where } A \text { is the power set of } \{ a , b , c \} \text {. }

(Short Answer)
4.8/5
(41)

find a formula that generates the following sequence a1, a2, a3 . . . . -5, 9, 13, 17, 21, . . . .

(Short Answer)
4.8/5
(37)

In questions determine whether the statement is true or false. -  If A and B are 2×2 matrices, then A+B=B+A\text { If } \mathbf { A } \text { and } \mathbf { B } \text { are } 2 \times 2 \text { matrices, then } \mathbf { A } + \mathbf { B } = \mathbf { B } + \mathbf { A } \text {. }

(True/False)
4.8/5
(34)

In questions determine whether the statement is true or false. -  If A and B are 2×2 matrices such that AB=(0000), then A=(0000) or B=(0000)\text { If } \mathbf { A } \text { and } \mathbf { B } \text { are } 2 \times 2 \text { matrices such that } \mathbf { A B } = \left( \begin{array} { l l } 0 & 0 \\0 & 0\end{array} \right) \text {, then } \mathbf { A } = \left( \begin{array} { l l } 0 & 0 \\0 & 0\end{array} \right) \text { or } \mathbf { B } = \left( \begin{array} { l l } 0 & 0 \\0 & 0\end{array} \right) \text {. }

(True/False)
4.8/5
(38)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1. - an=n!a _ { n } = n !

(Short Answer)
4.9/5
(43)

suppose g  : AB and f:BC where A={a,b,c,d},B={1,2,3},C={2,3,6,8}\text { : } A \rightarrow B \text { and } f : B \rightarrow C \text { where } A = \{ a , b , c , d \} , B = \{ 1,2,3 \} , C = \{ 2,3,6,8 \}  and g and f are defined by g={(a,2),(b,1),(c,3),(d,2)} and f={(1,8),(2,3),(3,2)}\text { and } g \text { and } f \text { are defined by } g = \{ ( a , 2 ) , ( b , 1 ) , ( c , 3 ) , ( d , 2 ) \} \text { and } f = \{ ( 1,8 ) , ( 2,3 ) , ( 3,2 ) \} \text {. } -  Find f1\text { Find } f ^ { - 1 } \text {. }

(Short Answer)
5.0/5
(42)

determine whether the set is finite or infinite. If the set is finite, find its size. - P(A), where A=P({1,2})\mathcal { P } ( A ) \text {, where } A = \mathcal { P } ( \{ 1,2 \} ) \text {. }

(Short Answer)
4.8/5
(35)

determine whether the given set is the power set of some set. If the set is a power set, give the set of which it is a power set. - {,{a},{,a}}\{ \varnothing , \{ a \} , \{ \varnothing , a \} \}

(Short Answer)
4.8/5
(38)

Find a 2 X 2 matrix . A(0000)\mathbf { A } \neq \left( \begin{array} { l l } 0 & 0 \\0 & 0\end{array} \right) such that A2=(0000)\mathbf { A } ^ { 2 } = \left( \begin{array} { l l } 0 & 0 \\0 & 0\end{array} \right)

(Short Answer)
4.8/5
(34)

determine whether the rule describes a function with the given domain and codomain. - h:RR where h(x)=xh : \mathbf { R } \rightarrow \mathbf { R } \text { where } h ( x ) = \sqrt { x }

(Short Answer)
4.8/5
(34)

For any function f: A → B , define a new function g: P(A) → P(B) as follows: for every S ⊆ A, g(S) = { f(x) | x ∈ S Prove that f is onto if and only if g is onto.

(Essay)
4.7/5
(30)

Verify that an=3n+4a _ { n } = 3 ^ { n + 4 } is a solution to the recurrence relation an=4an13an2a _ { n } = 4 a _ { n - 1 } - 3 a _ { n - 2 }

(Short Answer)
4.8/5
(34)

determine whether each of the following sets is countable or uncountable. For those that are countably infinite exhibit a one-to-one correspondence between the set of positive integers and that set. -The set of positive rational numbers that can be written with denominators less than 3.

(Short Answer)
4.8/5
(33)
Showing 1 - 20 of 214
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)