Exam 13: Modeling Computation

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

SAB,A0B1,0B10S \rightarrow A B , A \rightarrow 0 B 1,0 B 1 \rightarrow 0

Free
(Short Answer)
4.9/5
(40)
Correct Answer:
Verified

ii

Determine if 1101 belongs to the regular set (01)(11)(01)( 01 ) ^ { * } ( 11 ) ^ { * } ( 01 ) ^ { * } .

Free
(Short Answer)
4.8/5
(29)
Correct Answer:
Verified

Yes.

Determine if 1101 belongs to the regular set (11)0(11)( 11 ) ^ { * } 0 ^ { * } ( 11 ) ^ { * } .

Free
(Short Answer)
4.8/5
(38)
Correct Answer:
Verified

No.

Find the Kleene closure of A = {0, 1, 2}.

(Short Answer)
4.8/5
(38)

The productions of a phrase-structure grammar are S → S1, S → 0A, A → 1 Find a derivation of 0111 .

(Short Answer)
4.8/5
(33)

Construct a Turing machine that computes f(n1,n2)=n2+1f \left( n _ { 1 } , n _ { 2 } \right) = n _ { 2 } + 1 where n1,n20n _ { 1 } , n _ { 2 } \geq 0

(Essay)
4.9/5
(34)

Suppose a phrase-structure grammar has productions S1S0,S0A,A0S \rightarrow 1 S 0 , S \rightarrow 0 A , A \rightarrow 0 Find a derivation of 00 .

(Short Answer)
5.0/5
(35)

Which strings belong to the set represented by the regular expression 0∗ ∪ 11?

(Short Answer)
4.8/5
(33)

What is the language generated by the grammar with productions S → SA, S → 0, A → 1A,and A → 1, where S is the start symbol?

(Short Answer)
4.8/5
(34)

Suppose that A={1,11,01} and B={0,10} . Find A B .

(Short Answer)
4.9/5
(29)

Find the Kleene closure of A={1} .

(Short Answer)
4.8/5
(44)

Determine if 1101 belongs to the regular set 1(10)1\mathbf { 1 } ( \mathbf { 1 0 } ) ^ { * } 1 ^ { * } .

(Short Answer)
4.8/5
(31)

Construct a finite-state automaton that recognizes the set represented by the regular expression 10∗.

(Short Answer)
4.9/5
(42)

Consider the Turing machine T:(s0,0,s1,1,R),(s0,1,s1,1,R),(s1,0,s0,1,L),(s1,1,s0,0,R),(s0,B,s1,1,R)T : \left( s _ { 0 } , 0 , s _ { 1 } , 1 , R \right) , \left( s _ { 0 } , 1 , s _ { 1 } , 1 , R \right) , \left( s _ { 1 } , 0 , s _ { 0 } , 1 , L \right) , \left( s _ { 1 } , 1 , s _ { 0 } , 0 , R \right) , \left( s _ { 0 } , B , s _ { 1 } , 1 , R \right) For the following tape, determine the final tape when T halts, assuming that T begins in state s0 at the leftmost nonblank symbol. \@cdots 1 0 1 \@cdots

(Short Answer)
4.8/5
(37)

Suppose a phrase-structure grammar has productions SS11,S0A,SA1,A0,S \rightarrow S 11 , S \rightarrow 0 A , S \rightarrow A 1 , A \rightarrow 0 , of 011111.

(Short Answer)
4.7/5
(40)

 Find a grammar for the set {02n1nn0}\text { Find a grammar for the set } \left\{ 0 ^ { 2 n } 1 ^ { n } \mid n \geq 0 \right\} In questions 242924 - 29 let V={S,A,B,0,1}V = \{ S , A , B , 0,1 \} and T={0,1}T = \{ 0,1 \} . For each set of productions determine whether the resulting grammar GG is (i) type 0 grammar, but not type 1 , (ii) type 1 grammar, but not type 2 , (iii) type 2 grammar, but not type 3 , (iv) type 3 grammar.

(Short Answer)
4.8/5
(39)

Construct a Turing machine that computes f(n)=n+2f ( n ) = n + 2 where n0n \geq 0

(Essay)
4.8/5
(40)

Let G be the phrase-structure grammar with vocabulary V={A, B, a, b, S} , terminal element set T={a, b} , start symbol S , and production set Let  G  be the phrase-structure grammar with vocabulary  V={A, B, a, b, S} , terminal element set  T={a, b} , start symbol  S , and production set   derivable from S? (1)  ba , (2)  ab , (3) baab, (4) aababa, (5)  aba . derivable from S? (1) ba , (2) ab , (3) baab, (4) aababa, (5) aba .

(Short Answer)
4.9/5
(35)

Suppose A = {0, 1}. Describe all strings belonging to A∗.

(Short Answer)
4.8/5
(33)

Let A={0,11} . Find A3 .

(Short Answer)
4.8/5
(35)
Showing 1 - 20 of 71
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)