Exam 6: Conic Sections

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the center, foci, and vertices of the ellipse. - (x2)236+(y+3)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.8/5
(35)

Graph the hyperbola. - y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1  Graph the hyperbola. - \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.9/5
(35)

Find an equation for the ellipse described. -Center at (0, 0); focus at (5, 0); vertex at (8, 0)

(Multiple Choice)
4.9/5
(35)

Convert the equation to the standard form for a hyperbola by completing the square. - 4y225x2+8y50x121=04 y ^ { 2 } - 25 x ^ { 2 } + 8 y - 50 x - 121 = 0

(Multiple Choice)
4.8/5
(44)

Graph the equation. - (y+2)2=5(x1)(y+2)^{2}=-5(x-1)  Graph the equation. - (y+2)^{2}=-5(x-1)

(Multiple Choice)
4.8/5
(33)

Find the equation in standard form of the parabola described. -The focus has coordinates (0, 19), and the equation of the directrix is y = -19.

(Multiple Choice)
4.8/5
(30)

Graph the ellipse and locate the foci. - 4x2+9y2=364 x ^ { 2 } + 9 y ^ { 2 } = 36  Graph the ellipse and locate the foci. - 4 x ^ { 2 } + 9 y ^ { 2 } = 36

(Multiple Choice)
4.9/5
(40)

Solve the problem. -A searchlight is shaped like a parabola. If the light source is located 3 feet from the base along the axis of symmetry and the opening is 8 feet across, how deep should the searchlight be?

(Multiple Choice)
4.8/5
(42)

Find an equation for the ellipse described. -Center at (-4, 5); focus at (-6, 5); contains the point (-9, 5)

(Multiple Choice)
4.9/5
(38)

Graph the hyperbola. - 25x24y2=10025 x^{2}-4 y^{2}=100  Graph the hyperbola. - 25 x^{2}-4 y^{2}=100

(Multiple Choice)
4.8/5
(33)

Graph the equation. - (x2)2=7(y+2)( x - 2 ) ^ { 2 } = 7 ( y + 2 )  Graph the equation. - ( x - 2 ) ^ { 2 } = 7 ( y + 2 )

(Multiple Choice)
4.9/5
(34)

Find the equation in standard form of the parabola described. -The vertex has coordinates (6, 9), and the focus has coordinates (7, 9).

(Multiple Choice)
4.8/5
(38)

Graph the equation. - (x+2)29+(y2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1  Graph the equation. - \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.8/5
(34)

Graph the ellipse and locate the foci. - x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1  Graph the ellipse and locate the foci. - \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1

(Multiple Choice)
4.8/5
(37)

Find the center, transverse axis, vertices, and foci of the hyperbola. - 16x2100y2=160016 x ^ { 2 } - 100 y ^ { 2 } = 1600

(Multiple Choice)
4.7/5
(30)

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola. - (x1)24(y2)2=4( x - 1 ) ^ { 2 } - 4 ( y - 2 ) ^ { 2 } = 4

(Multiple Choice)
4.9/5
(37)

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola. - (x+4)216(y+3)236=1\frac { ( x + 4 ) ^ { 2 } } { 16 } - \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1

(Multiple Choice)
4.7/5
(33)

Graph the equation. - y2=20xy^{2}=20 x  Graph the equation. - y^{2}=20 x

(Multiple Choice)
4.9/5
(32)

Find the vertex, focus, and directrix of the parabola with the given equation. - (y4)2=16(x1)( y - 4 ) ^ { 2 } = - 16 ( x - 1 )

(Multiple Choice)
4.9/5
(32)

Find the center, transverse axis, vertices, and foci of the hyperbola. - y24x2121=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 121 } = 1

(Multiple Choice)
4.8/5
(35)
Showing 21 - 40 of 97
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)