Exam 18: Advanced Time Series Topics

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Which of the following statements is true?

Free
(Multiple Choice)
4.8/5
(40)
Correct Answer:
Verified

C

The Koyck distributed lag model is an example of:

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

C

A spurious regression refers to a situation where:

Free
(Multiple Choice)
4.7/5
(35)
Correct Answer:
Verified

B

​The long-run propensity measures the long-run change in the expected value of y given a one-unit, permanent increase in z.

(True/False)
4.8/5
(22)

If the t statistic for the presence of a unit root in a variable is −7.22 and the 5% critical value is −2.86, there is strong evidence against a unit root in the variable.

(True/False)
4.8/5
(26)

Vector autoregressive models should be used for forecasting if the series being studied are cointegrated.

(True/False)
4.8/5
(38)

If two series have means that are not trending, a simple regression involving two independent I(1) series will often result in a significant _____ statistic.​

(Multiple Choice)
4.9/5
(33)

Exponential smoothing is a forecasting method where the weights on the lagged dependent variable decline to zero exponentially.

(True/False)
4.9/5
(36)

The R2 calculated in a spurious regression is a valid and efficient estimate of the goodness-of-fit of the regression equation.

(True/False)
4.8/5
(42)

The model: yt = The model: y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>z<sub>t</sub> +   yt -<sub> 1</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +v<sub>t</sub>, where v<sub>t</sub> = u<sub>t</sub> -   u<sub>t -</sub> <sub>1</sub> represents a: 0 + The model: y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>z<sub>t</sub> +   yt -<sub> 1</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +v<sub>t</sub>, where v<sub>t</sub> = u<sub>t</sub> -   u<sub>t -</sub> <sub>1</sub> represents a: 0zt + The model: y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>z<sub>t</sub> +   yt -<sub> 1</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +v<sub>t</sub>, where v<sub>t</sub> = u<sub>t</sub> -   u<sub>t -</sub> <sub>1</sub> represents a: yt - 1 + The model: y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>z<sub>t</sub> +   yt -<sub> 1</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +v<sub>t</sub>, where v<sub>t</sub> = u<sub>t</sub> -   u<sub>t -</sub> <sub>1</sub> represents a: 1zt - 1 +vt, where vt = ut - The model: y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>z<sub>t</sub> +   yt -<sub> 1</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +v<sub>t</sub>, where v<sub>t</sub> = u<sub>t</sub> -   u<sub>t -</sub> <sub>1</sub> represents a: ut - 1 represents a:

(Multiple Choice)
4.9/5
(33)

Let {(yt, zt): t = …, −2,−1, 0, 1, 2, …} be a bivariate time series process. The model: yt = Let {(y<sub>t</sub>, z<sub>t</sub>): t = …, −2,−1, 0, 1, 2, …} be a bivariate time series process. The model: y<sub>t</sub> =   +   <sub>0</sub>z<sub>t</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +   <sub>2</sub>z<sub>t -</sub> <sub>2</sub> + ….. + u<sub>t</sub>, represents a(n): + Let {(y<sub>t</sub>, z<sub>t</sub>): t = …, −2,−1, 0, 1, 2, …} be a bivariate time series process. The model: y<sub>t</sub> =   +   <sub>0</sub>z<sub>t</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +   <sub>2</sub>z<sub>t -</sub> <sub>2</sub> + ….. + u<sub>t</sub>, represents a(n): 0zt + Let {(y<sub>t</sub>, z<sub>t</sub>): t = …, −2,−1, 0, 1, 2, …} be a bivariate time series process. The model: y<sub>t</sub> =   +   <sub>0</sub>z<sub>t</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +   <sub>2</sub>z<sub>t -</sub> <sub>2</sub> + ….. + u<sub>t</sub>, represents a(n): 1zt - 1 + Let {(y<sub>t</sub>, z<sub>t</sub>): t = …, −2,−1, 0, 1, 2, …} be a bivariate time series process. The model: y<sub>t</sub> =   +   <sub>0</sub>z<sub>t</sub> +   <sub>1</sub>z<sub>t -</sub> <sub>1</sub> +   <sub>2</sub>z<sub>t -</sub> <sub>2</sub> + ….. + u<sub>t</sub>, represents a(n): 2zt - 2 + ….. + ut, represents a(n):

(Multiple Choice)
5.0/5
(29)

In calculation of squared forecast errors, an error of +3 yields a loss three times greater than an error of −1.

(True/False)
4.9/5
(41)

​For 2.5% significance level, the asymptotic critical value for cointegration test with linear time trend is -3.59.

(True/False)
4.8/5
(29)

Which of the following is true of squared forecast errors?

(Multiple Choice)
4.9/5
(29)

In the given AR(1) model, yt = In the given AR(1) model, y<sub>t</sub> =   +   yt -<sub> 1</sub> +   , t = 1,2…… , the Dickey-Fuller distribution refers to the: + In the given AR(1) model, y<sub>t</sub> =   +   yt -<sub> 1</sub> +   , t = 1,2…… , the Dickey-Fuller distribution refers to the: yt - 1 + In the given AR(1) model, y<sub>t</sub> =   +   yt -<sub> 1</sub> +   , t = 1,2…… , the Dickey-Fuller distribution refers to the: , t = 1,2…… , the Dickey-Fuller distribution refers to the:

(Multiple Choice)
4.7/5
(28)

​A process {yt} is a martingale if _____ is equal to yt for all t ≥ 0.

(Multiple Choice)
4.8/5
(35)

A spurious correlation refers to a situation where:

(Multiple Choice)
4.8/5
(44)

In case of forecasts, the root mean squared error is the:

(Multiple Choice)
4.9/5
(37)

Which of the following statements correctly identifies the difference between an autoregressive model and a vector autoregressive model?

(Multiple Choice)
4.7/5
(40)

Which of the following is used to test whether a time series follows a unit root process?

(Multiple Choice)
4.7/5
(44)
Showing 1 - 20 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)