Exam 20: Hydrogen

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

For stationary applications, mass and volume considerations for a fuel source are much less important than they are for use in transportation. It therefore may be the most reasonable to sacrifice compactness to minimize requirements for expensive advanced technologies. Consider a plan to provide power to a small city with a population of 100,000 , using hydrogen fuel cells with an efficiency of 60%60 \% . The average net percapita power consumption is 6 kW6 \mathrm {~kW} for electricity, heat, and power for an electric vehicle. (a) Calculate the volume of hydrogen needed to provide the city's energy for one month if the hydrogen is stored at a (relatively low) pressure of 1MPa1 \mathrm { MPa } . (b) If the city has a land area of 100 km2100 \mathrm {~km} ^ { 2 } , what fraction of this area would need to be devoted to hydrogen storage if the storage tanks were vertical cylinders 3 m3 \mathrm {~m} in diameter and 5 m5 \mathrm {~m} high and were packed tightly together in a square array?

Free
(Essay)
4.9/5
(43)
Correct Answer:
Verified

 (a) The power required is 105×6 kW=6×108 W. At 60% efficiency the total \text { (a) The power required is } 10 ^ { 5 } \times 6 \mathrm {~kW} = 6 \times 10 ^ { 8 } \mathrm {~W} \text {. At } 60 \% \text { efficiency the total } power required 6×108 W/0.6=109 W6 \times 10 ^ { 8 } \mathrm {~W} / 0.6 = 10 ^ { 9 } \mathrm {~W} . For one month the energy requirement is
(106 kW)×(30 d/ month )×(24 h/d)=7.2×108kWh\left( 10 ^ { 6 } \mathrm {~kW} \right) \times ( 30 \mathrm {~d} / \text { month } ) \times ( 24 \mathrm {~h} / \mathrm { d } ) = 7.2 \times 10 ^ { 8 } \mathrm { kWh }
Converting this to Joules gives
(7.2×108kWh)×(3.6×106 J/kWh)=2.59×1015 J per month \left( 7.2 \times 10 ^ { 8 } \mathrm { kWh } \right) \times \left( 3.6 \times 10 ^ { 6 } \mathrm {~J} / \mathrm { kWh } \right) = 2.59 \times 10 ^ { 15 } \mathrm {~J} \text { per month }
For an energy content of 142MJ/kg142 \mathrm { MJ } / \mathrm { kg } , the amount of hydrogen required to provide one month of energy is
(2.59×1015)/(1.42×108 J/kg)=1.82×107 kg hydrogen per month. \left( 2.59 \times 10 ^ { 15 } \right) / \left( 1.42 \times 10 ^ { 8 } \mathrm {~J} / \mathrm { kg } \right) = 1.82 \times 10 ^ { 7 } \mathrm {~kg} \text { hydrogen per month. }
As hydrogen obeys the ideal gas law at 1MPa1 \mathrm { MPa } , the density will follow from the calculation in Example 20.2. We use equation (20.12) ρ=MPRT\rho = \frac { M P } { R T } where the molecular mass for hydrogen is 2 g/mol,R=8.315 JK1mol1,T=293 K2 \mathrm {~g} / \mathrm { mol } , R = 8.315 \mathrm {~J} \cdot \mathrm { K } ^ { - 1 } \cdot \mathrm { mol } ^ { - 1 } , T = 293 \mathrm {~K} and 1MPa=1.0×106 Pa1 \mathrm { MPa } = 1.0 \times 10 ^ { 6 } \mathrm {~Pa} . Thus equation (20.12) may be written as
ρ=[(0.002 kgmol1)×(1.0×106 kgm1s2)]/[(8.315 kgm2s2K1mol1)×(293 K)]=0.82 kg/m3\begin{aligned}\rho & = \left[ \left( 0.002 \mathrm {~kg} \cdot \mathrm { mol } ^ { - 1 } \right) \times \left( 1.0 \times 10 ^ { 6 } \mathrm {~kg} \cdot \mathrm { m } ^ { - 1 } \cdot \mathrm { s } ^ { - 2 } \right) \right] / \left[ \left( 8.315 \mathrm {~kg} \cdot \mathrm { m } ^ { 2 } \cdot \mathrm { s } ^ { - 2 } \cdot \mathrm { K } ^ { - 1 } \cdot \mathrm { mol } ^ { - 1 } \right) \times ( 293 \mathrm {~K} ) \right] \\& = 0.82 \mathrm {~kg} / \mathrm { m } ^ { 3 }\end{aligned}
Thus the volume required for 1.82×107 kg1.82 \times 10 ^ { 7 } \mathrm {~kg} of hydrogen is
(1.82×107 kg)/(0.82 kg/m3)=2.21×107 m3\left( 1.82 \times 10 ^ { 7 } \mathrm {~kg} \right) / \left( 0.82 \mathrm {~kg} / \mathrm { m } ^ { 3 } \right) = 2.21 \times 10 ^ { 7 } \mathrm {~m} ^ { 3 }
(b) In a square array, a 3 m3 \mathrm {~m} diameter tank will occupy 3×3=9 m23 \times 3 = 9 \mathrm {~m} ^ { 2 } of land area but will have a cross sectional area of π(1.5 m)2=7.065 m2\pi ( 1.5 \mathrm {~m} ) ^ { 2 } = 7.065 \mathrm {~m} ^ { 2 } and have a volume of about 7×5=357 \times 5 = 35 (2.21×107 m3/35 m3)×(9 m2)=5.68×106 m2\left( 2.21 \times 10 ^ { 7 } \mathrm {~m} ^ { 3 } / 35 \mathrm {~m} ^ { 3 } \right) \times \left( 9 \mathrm {~m} ^ { 2 } \right) = 5.68 \times 10 ^ { 6 } \mathrm {~m} ^ { 2 } of land area.
This is 5.68 km25.68 \mathrm {~km} ^ { 2 } or 5.68%5.68 \% of the total land area.

Calculate the percentage of improvement in the energy density of a CHG  fuel tank if the pressure is increased from 35 to 70MPa\text { fuel tank if the pressure is increased from } 35 \text { to } 70 \mathrm { MPa } \text {. }

Free
(Essay)
4.9/5
(37)
Correct Answer:
Verified

From Figure 20.3, it is seen that the density at at 35 MPa and 70 MPa is 24 kg/m324 \mathrm {~kg} / \mathrm { m } ^ { 3 }  and 36 kg/m3, respectively. The increase in density (and energy density) is \text { and } 36 \mathrm {~kg} / \mathrm { m } ^ { 3 } \text {, respectively. The increase in density (and energy density) is } (36 kg/m324 kg/m3)/24 kg/m3=0.5 or 50%\left( 36 \mathrm {~kg} / \mathrm { m } ^ { 3 } - 24 \mathrm {~kg} / \mathrm { m } ^ { 3 } \right) / 24 \mathrm {~kg} / \mathrm { m } ^ { 3 } = 0.5 \text { or } 50 \%

The lightest element that is a solid at room temperature, lithium, absorbs hydrogen to form LiH\mathrm { LiH } . Compare the energy density of LiH (i.e., energy per kg\mathrm { kg } ) to the energy density of gasoline.

Free
(Essay)
4.8/5
(32)
Correct Answer:
Verified

 The atomic mass of Li is 7u, so LiH has a hydrogen content of \text { The atomic mass of } \mathrm { Li } \text { is } 7 \mathrm { u } \text {, so } \mathrm { LiH } \text { has a hydrogen content of } 100×(1u)/(7u+1u)=12.5%100 \times ( 1 \mathrm { u } ) / ( 7 \mathrm { u } + 1 \mathrm { u } ) = 12.5 \%
Therefore 1 kg1 \mathrm {~kg} of LiH\mathrm { LiH } contains
(1 kg)×(0.125)=0.125 kg hydrogen ( 1 \mathrm {~kg} ) \times ( 0.125 ) = 0.125 \mathrm {~kg} \text { hydrogen }
The energy content of hydrogen is 142MJ/kg142 \mathrm { MJ } / \mathrm { kg } so the energy density of LiH\mathrm { LiH } is
(0.125 kg/kg)×(142MJ/kg)=17.75MJ/kg( 0.125 \mathrm {~kg} / \mathrm { kg } ) \times ( 142 \mathrm { MJ } / \mathrm { kg } ) = 17.75 \mathrm { MJ } / \mathrm { kg }
The energy content of gasoline is 34.8MJ/L34.8 \mathrm { MJ } / \mathrm { L } and its density is about 0.72 kg/L0.72 \mathrm {~kg} / \mathrm { L } so the energy density is
(34.8MJ/L/(0.72 kg/L)=48.3MJ/kg( 34.8 \mathrm { MJ } / \mathrm { L } / ( 0.72 \mathrm {~kg} / \mathrm { L } ) = 48.3 \mathrm { MJ } / \mathrm { kg }
The relative energy density of LiH\mathrm { LiH } compared to gasoline is
100×(17.75MJ/kg)/(48.3MJ/kg)=37%100 \times ( 17.75 \mathrm { MJ } / \mathrm { kg } ) / ( 48.3 \mathrm { MJ } / \mathrm { kg } ) = 37 \%

(a) Given a fuel cell efficiency of 75% and a required energy to the wheels of 0.6MJ/km0.6 \mathrm { MJ } / \mathrm { km } , calculate the mass of hydrogen fuel required to give a vehicle a range of 300 km\mathrm { km } . (b) Calculate the fuel volume if hydrogen is stored in the form of (i) liquid hydrogen, (ii) CHG\mathrm { CHG } at 50MPa50 \mathrm { MPa } , and (iii) TiH2\mathrm { TiH } _ { 2 } .

(Essay)
4.7/5
(39)

Hydrogen gas is burned to provide heat for a typical North American home (see Chapter 2 for heating requirements). If the hydrogen is stored in a spherical tank at a pressure of 80 MPa, what would be the diameter of the tank needed to supply the averageMmonthly heating requirement? Assume a typical furnace efficiency (Chapter 17).

(Essay)
4.8/5
(19)

If hydrogen followed an ideal gas law at all pressures, calculate the pressure  at which the density of CHG would exceed that of LH2(71 kg/m3)\text { at which the density of } \mathrm { CHG } \text { would exceed that of } \mathrm { LH } _ { 2 } \left( 71 \mathrm {~kg} / \mathrm { m } ^ { 3 } \right) \text {. }

(Essay)
4.9/5
(22)

Consider the situation where all 250,000,000 gasoline-powered vehicles in the United States, each of which is driven an average of 20,000 km20,000 \mathrm {~km} per year and requires an average of 0.55MJ/km0.55 \mathrm { MJ } / \mathrm { km } from the batteries, would be replaced with PEM fuel cell vehicles that use hydrogen produced by electrolysis using electricity generated by 1GWe1 \mathrm { GW } _ { \mathrm { e } } nuclear power plants (operating at a 70%70 \% capacity factor). How many new nuclear power plants would need to be constructed to accommodate this increase in electricity demand?

(Essay)
4.8/5
(29)

Assume that the cost of hydrogen per unit energy is the same as gasoline ($0.03/MJ)( \$ 0.03 / \mathrm { MJ } ) . What is the loss (in dollars per day) due to evaporation from a 100LLH2100 - \mathrm { L } \mathrm { LH } _ { 2 } fuel tank?

(Essay)
4.8/5
(29)

If the BMW Hydrogen 7 consumes an average of 13.7 L/100 km when burning gasoline and 50.0 L/100 km50.0 \mathrm {~L} / 100 \mathrm {~km} when burning liquid hydrogen, show that the engine efficiency is very nearly the same for both fuels.

(Essay)
4.9/5
(33)

MgH2 has been considered as a possible hydrogen storage material. \mathrm { MgH } _ { 2 } \text { has been considered as a possible hydrogen storage material. } Calculate the mass and volume of Mg that would be required to store 100 kg of hydrogen.

(Essay)
4.9/5
(33)

Consider a simple model of the burning of butane as the oxidation of the carbon content and the oxidation of the hydrogen content separately. Does the combined heat of combustion of the components account for the heat of combustion of butane? Are there obvious reasons for any differences?

(Essay)
4.8/5
(39)

Hydrogen gas is burned according to the reaction 2H2+O22H2O2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} to provide heat for a typical North American home (see Chapter 2 for heating requirements). What would be the average daily water production in liters? Assume a typical furnace efficiency (Chapter 17).

(Essay)
4.9/5
(30)

The BMW Hydrogen 7 consumes an average of 13.7 L/100 km of gasoline (when operating in the gasoline mode) and 50.0 L/100 km50.0 \mathrm {~L} / 100 \mathrm {~km} of liquid hydrogen (when operating in the hydrogen mode). (a) If gasoline costs $0.90/L\$ 0.90 / \mathrm { L } , what is the fuel cost per km in the gasoline mode? (b) If the hydrogen is produced and processed using electricity that costs $0.12/kWh\$ 0.12 / \mathrm { kWh } , what is the cost per km in the hydrogen mode?

(Essay)
4.8/5
(31)

One possible use for hydrogen as an energy storage mechanism is for large-scale grid storage instead of pumped hydroelectric or compressed air. Consider the possibility of using the cavern at the Huntorf facility to store hydrogen with the same maximum pressure that is now used to store compressed air. The hydrogen could then be burned in a hydrogen ICE to generate electricity. Estimate the relative electrical energy that could be produced by the two approaches.

(Essay)
4.7/5
(35)

A solid oxide fuel cell operates at 55% efficiency using methane as a fuel. Calculate the mass (in grams) of water and carbon dioxide produced for every kilowatthour electrical of output. Note the heat of combustion of methane is 55.5MJ/kg55.5 \mathrm { MJ } / \mathrm { kg } (Chapter 3).

(Essay)
4.8/5
(40)

Consider the following three applications of fuel cells for producing electricity to power a vehicle. (i) A proton exchange membrane fuel cell uses hydrogen produced by electrolysis using electricity generated by burning coal. (ii) A proton exchange membrane fuel cell uses hydrogen produced by electrolysis using electricity generated by a photovoltaic array. (iii) A solid oxide fuel cell uses methane as a fuel. For each case discuss as quantitatively as possible (a) The overall efficiency of converting primary energy to energy at the vehicle's wheels (b) The CO2\mathrm { CO } _ { 2 } emissions per MJ\mathrm { MJ } of energy at the vehicle's wheels

(Essay)
4.9/5
(27)

Calculate the carbon footprint /km) for a fuel cell vehicle requiring 0.6MJ/km0.6 \mathrm { MJ } / \mathrm { km } at the wheels if all of the electricity is generated by burning natural gas in thermal generating stations.

(Essay)
5.0/5
(36)

 The U.S. Department of Energy has set a benchmark of 6%H by weight \text { The U.S. Department of Energy has set a benchmark of } 6 \% \mathrm { H } \text { by weight } for an acceptable hydrogen storage material. Consider the following possible metals that form hydride phases: NaAlH4,LiAlH4,LaNi5H6\underline { \mathrm { NaAlH } _ { 4 } } , \underline { \mathrm { LiAlH } _ { 4 } } , \underline { \mathrm { LaNi } _ { 5 } \mathrm { H } _ { 6 } } , and TiFeH2\underline { \mathrm { TiFeH } } _ { 2 } . Which meet the DOE standard?

(Essay)
4.9/5
(35)

The Mazda RX-8 RE hydrogen vehicle has a 110 L CHG tank that stores hydrogen at 35MPa35 \mathrm { MPa } and a gasoline tank with a volume of 61 L61 \mathrm {~L} . Calculate the relative efficiency for the engine when burning hydrogen compared to its efficiency when burning gasoline. Assume that the energy to the wheels per km is the same for both fuels.

(Essay)
4.9/5
(39)

Consider the possibility of extracting energy from 1 m3 of water. One approach would be lift the water to some elevation and then to generate electricity hydroelectrically (i.e., pumped hydroelectric storage). The second approach would be to produce hydrogen from the water by electrolysis and then generate electricity from the hydrogen in a proton exchange membrane fuel cell. Using typical efficiencies as given in Chapters 18 and 20, how high would the cubic meter of water have to be lifted to provide the same total electrical energy output as the fuel cell?

(Essay)
4.9/5
(34)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)