Exam 5: Polynomials: Factoring

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Factor completely. - 49x16x349 x - 16 x ^ { 3 }

(Multiple Choice)
4.9/5
(37)

Factor. - 3x2y6+6x2y53 x ^ { 2 } y ^ { 6 } + 6 x ^ { 2 } y ^ { 5 }

(Multiple Choice)
4.9/5
(36)

Factor. - u22uv15v2u ^ { 2 } - 2 u v - 15 v ^ { 2 }

(Multiple Choice)
4.8/5
(33)

Factor. - 8x224xy32y28 x ^ { 2 } - 24 x y - 32 y ^ { 2 }

(Multiple Choice)
4.8/5
(34)

Factor. - x3+6x216xx ^ { 3 } + 6 x ^ { 2 } - 16 x

(Multiple Choice)
4.9/5
(45)

Factor. - 36m918m448m236 m ^ { 9 } - 18 m ^ { 4 } - 48 m ^ { 2 }

(Multiple Choice)
4.9/5
(36)

Factor. - 245x2+350xy+125y2245 x ^ { 2 } + 350 x y + 125 y ^ { 2 }

(Multiple Choice)
4.8/5
(33)

Factor. - y2+1.6y+0.64y ^ { 2 } + 1.6 y + 0.64

(Multiple Choice)
4.8/5
(34)

Factor. - 5 m(2m)+4n(2m)5 \mathrm {~m} ( 2 - \mathrm { m } ) + 4 \mathrm { n } ( 2 - \mathrm { m } )

(Multiple Choice)
4.9/5
(36)

Factor. - t2+0.8t+0.12t ^ { 2 } + 0.8 t + 0.12

(Multiple Choice)
4.8/5
(43)

Factor completely. - x250x+625x ^ { 2 } - 50 x + 625

(Multiple Choice)
4.9/5
(46)

Factor by grouping. - 12x415x28x2+1012 x ^ { 4 } - 15 x ^ { 2 } - 8 x ^ { 2 } + 10

(Multiple Choice)
4.8/5
(42)

Factor completely. - x2+40x+400\mathrm { x } ^ { 2 } + 40 \mathrm { x } + 400

(Multiple Choice)
4.9/5
(45)

Factor. - t3+27t ^ { 3 } + 27

(Multiple Choice)
4.9/5
(35)

Determine whether the following is a difference of squares. - 1y21 - y ^ { 2 }

(True/False)
4.7/5
(32)

Factor. - 15x2+32x+1615 x ^ { 2 } + 32 x + 16

(Multiple Choice)
4.8/5
(45)

Factor. - 64s3+164 s ^ { 3 } + 1

(Multiple Choice)
4.8/5
(40)

Factor. - 14x249x2814 x ^ { 2 } - 49 x - 28

(Multiple Choice)
4.9/5
(41)

Factor. - x3x272xx ^ { 3 } - x ^ { 2 } - 72 x

(Multiple Choice)
4.9/5
(38)

Factor by grouping. - 20x2+24xy15xy18y220 x ^ { 2 } + 24 x y - 15 x y - 18 y ^ { 2 }

(Multiple Choice)
4.8/5
(35)
Showing 81 - 100 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)