Exam 12: Exponential Functions and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line. - y=7x2+2xy = 7 x ^ { 2 } + 2 x  Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line. - y = 7 x ^ { 2 } + 2 x

(Multiple Choice)
4.7/5
(28)

Find the requested composition of functions. -Given f(x)=3xf ( x ) = \frac { 3 } { x } and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find gf(x)g f ( x ) .

(Multiple Choice)
4.8/5
(30)

Find f(x)and g(x)such that h(x)= (f ° g)(x). - h(x)=58x2+92h ( x ) = \sqrt { 58 x ^ { 2 } + 92 }

(Multiple Choice)
4.8/5
(43)

Find f(x)and g(x)such that h(x)= (f ° g)(x). - h(x)=x54x5+2h ( x ) = \frac { x ^ { 5 } - 4 } { x ^ { 5 } + 2 }

(Multiple Choice)
4.7/5
(35)

Graph. - f(x)=3x1f(x)=3 x-1  Graph. - f(x)=3 x-1

(Multiple Choice)
4.8/5
(31)

Solve the problem. -An accountant tabulated a firm's profits for four recent years in the following table: Year Profits 1996 \ 250,000 1997 \ 300,000 1998 \ 400,000 1999 \ 600,000 The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year 2001.2001 .  Solve the problem. -An accountant tabulated a firm's profits for four recent years in the following table:   \begin{array} { l | l }  \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year  2001 .

(Multiple Choice)
4.9/5
(37)

Graph the relation using solid circles and the inverse using open circles. - {(1,16),(7,2),(5,11)}\{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}  Graph the relation using solid circles and the inverse using open circles. - \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}

(Multiple Choice)
4.9/5
(40)

Solve the problem. -The number of bacteria growing in an incubation culture increases with time according to B(x)=9800(2)x\mathrm { B } ( \mathrm { x } ) = 9800 ( 2 ) ^ { \mathrm { x } } , where xx is time in days. Find the number of bacteria when x=0x = 0 and x=3x = 3 .

(Multiple Choice)
4.8/5
(43)

Determine whether the function is one-to-one. - f(x)=(13)xf ( x ) = \left( \frac { 1 } { 3 } \right) ^ { x }

(True/False)
4.9/5
(36)

Determine whether the given function is one-to-one. If so, find a formula for the inverse. - f(x)=4x72x+6f ( x ) = \frac { 4 x - 7 } { 2 x + 6 }

(Multiple Choice)
4.8/5
(38)

Find the requested composition of functions. -Given f(x)=6x2f ( x ) = \frac { 6 } { x ^ { 2 } } and g(x)=x3g ( x ) = x - 3 , find gf(x)g f ( x )

(Multiple Choice)
4.8/5
(32)

Find f(x)and g(x)such that h(x)= (f ° g)(x). - h(x)=6(8x+7)29h ( x ) = 6 ( 8 x + 7 ) ^ { 2 } - 9

(Multiple Choice)
4.9/5
(32)

Find the requested composition of functions. -Given f(x)=x107f ( x ) = \frac { x - 10 } { 7 } and g(x)=7x+10g ( x ) = 7 x + 10 , find gf(x)g f ( x ) .

(Multiple Choice)
4.9/5
(34)

Find f(x)and g(x)such that h(x)= (f ° g)(x). - h(x)=1x25h ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

(Multiple Choice)
4.8/5
(20)

Find the requested composition of functions. -Given f(x)=7x+8f ( x ) = 7 x + 8 and g(x)=5x1g ( x ) = 5 x - 1 , find fg(x)f g ( x ) .

(Multiple Choice)
4.9/5
(36)

Graph the relation using solid circles and the inverse using open circles. - {(6,7),(7,6),(9,4),(9,4)}\{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}  Graph the relation using solid circles and the inverse using open circles. - \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}

(Multiple Choice)
4.9/5
(34)

Determine whether the function is one-to-one. - f(x)=4x2+xf ( x ) = 4 x ^ { 2 } + x

(True/False)
4.9/5
(42)

Graph. - f(x)=(13)x+2f(x)=\left(\frac{1}{3}\right)^{x}+2  Graph. - f(x)=\left(\frac{1}{3}\right)^{x}+2

(Multiple Choice)
4.7/5
(30)

Find the requested composition of functions. -Given f(x)=x2+8f ( x ) = x ^ { 2 } + 8 and g(x)=x28g ( x ) = x ^ { 2 } - 8 , find fg(x)f g ( x ) .

(Multiple Choice)
4.9/5
(33)

Find an equation of the inverse of the relation. - y=3x2+5xy = 3 x ^ { 2 } + 5 x

(Multiple Choice)
4.8/5
(27)
Showing 41 - 60 of 68
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)