Exam 10: Systems of Equations and Inequalities

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the direction of the vector v=6i+63jv = 6 i + 6 \sqrt { 3 } \mathbf { j }

Free
(Multiple Choice)
4.9/5
(41)
Correct Answer:
Verified

E

Find the vector Y\mathbf { Y } having length v=2| \mathrm { v } | = 2 , and direction θ=135\theta = 135 ^ { \circ }

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
Verified

C

Given u=2,1\mathbf { u } = \langle 2,1 \rangle and v=3,1\mathbf { v } = \langle - 3,1 \rangle , calculate projxu\operatorname { proj } _ { \mathbf { x } } \mathbf { u } and then resolve u\mathbf { u } into u1\mathbf { u } _ { 1 } and u2\mathbf { u } _ { 2 } .

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

projvu=(uvv2)v=((2)(3)+(1)(1)(3)2+(1)2)(3,1)=12(3,1)=(32,12)\operatorname { proj } _ { \mathbf { v } } \mathbf { u } = \left( \frac { \mathbf { u } \cdot \mathbf { v } } { | \mathbf { v } | ^ { 2 } } \right) \mathbf { v } = \left( \frac { ( 2 ) ( - 3 ) + ( 1 ) ( 1 ) } { ( - 3 ) ^ { 2 } + ( 1 ) ^ { 2 } } \right) ( - 3,1 ) = - \frac { 1 } { 2 } ( - 3,1 ) = \left( \frac { 3 } { 2 } , - \frac { 1 } { 2 } \right)
. Thus u1=(32,12)\mathbf { u } _ { 1 } = \left( \frac { 3 } { 2 } , - \frac { 1 } { 2 } \right)
, u2=(2,1)(J2,12)=(12,32)\mathbf { u } _ { 2 } = ( 2,1 ) - \left( \frac { J } { 2 } , - \frac { 1 } { 2 } \right) = \left( \frac { 1 } { 2 } , \frac { 3 } { 2 } \right)
.

Given u=(4,3)\mathbf { u } = ( 4 , - 3 ) and v=,2,2\mathrm { v } = \langle , 2,2 \rangle , calculate projvu\mathrm { proj } _ { \mathbf { v } } \mathbf { u }

(Multiple Choice)
4.9/5
(36)

A man pulls a sled horizontally by exerting 641b641 b on the rope that is tied to its front end. If the rope makes an angle of 4545 ^ { \circ } With horizontal, find the work done in moving the sled 3535 Ft

(Multiple Choice)
4.8/5
(28)

If the vector v has initial point P, what is its terminal point? v=(0,0,1),P(1,1,1)\mathbf { v } = ( 0,0,1 ) , P ( 1,1 , - 1 )

(Essay)
4.7/5
(35)

Two vectors u and v are given. Find the angle to one decimal place (expressed in degrees) between u and v. u=4,0,2,v=2,1,0\mathbf { u } = \langle 4,0 , - 2 \rangle , \mathbf { v } = \langle 2,1,0 \rangle

(Essay)
4.9/5
(30)

Find parametric equations for the line that passes through the point P and is parallel to the vector v. P(0,0,0),v=5,2,9P ( 0,0,0 ) , \quad \mathrm { v } = \langle - 5,2,9 \rangle

(Multiple Choice)
4.8/5
(38)

Find parametric equations for the line that passes through the points P and Q. P(2,1,1),Q(0,1,3)P ( 2 , - 1 , - 1 ) , \quad Q ( 0,1 , - 3 )

(Essay)
4.8/5
(37)

Find the center and radius of the sphere. x2+y2+z24x+48y=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 4 x + 4 - 8 y = 0

(Multiple Choice)
4.8/5
(30)

Find uY\mathbf { u} \cdot \mathbf { Y } . u=5,0),v=(3,1)\mathbf { u } = \langle 5,0 ) , \mathbf { v } = ( \sqrt { 3 } , 1 )

(Multiple Choice)
4.8/5
(40)

A plane has normal vector n and passes through the point P. Find an equation for the plane. n=5ij+2k,P(0,2,3)\mathbf { n } = 5 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } , P ( 0,2 , - 3 )

(Essay)
4.8/5
(48)

Given that the forces F1=(10,3)\mathbf { F } _ { 1 } = ( - 10,3 ) , F2=(4,1)\mathbf { F } _ { 2 } = ( - 4,1 ) And F3=4,10\mathbf { F } _ { 3 } = \langle 4 , - 10 \rangle Are acting on a point pp , find the resultant force

(Multiple Choice)
4.7/5
(35)

A plane has normal vector n and passes through the point P. Find an equation for the plane. n=(3,0,13),P(2,4,9)\mathbf { n } = \left( 3,0 , - \frac { 1 } { 3 } \right) , P ( 2,4,9 )

(Essay)
4.9/5
(27)

Find the component of u\mathbf { u } along Y\mathbf { Y } if u=12i+2j\mathbf { u } = - \frac { 1 } { 2 } \mathbf { i } + 2 \mathbf { j } and v=2i+12j\mathbf { v } = - 2 \mathbf { i } + \frac { 1 } { 2 } \mathbf { j } .

(Essay)
4.7/5
(29)

A water tank is in the shape of a sphere of radius 10 feet. The tank is supported on a metal circle 8 feet below the center of the sphere, as shown in the figure. Find the radius of the metal circle.

(Short Answer)
4.8/5
(43)

Find the work done by the force F=5i+25j\mathbf { F } = 5 \mathbf { i } + 25 \mathbf { j } in moving an object from P(0,0)P ( 0,0 ) to Q(1,6)Q ( 1,6 ) .

(Essay)
4.9/5
(38)

Determine whether u=23i+2j\mathbf { u } = 2 \sqrt { 3 } \mathbf { i } + 2 \mathbf { j } is orthogonal to v=i3j\mathbf { v } = \mathbf { i } - \sqrt { 3 } \mathbf { j } . Justify your answer.

(Essay)
4.7/5
(37)

Find the area of the parallelogram determined by the given vectors. u=(0,2,3),v=5,5,0)\mathbf { u } = ( 0 , - 2,3 ) , \mathbf { v } = \langle 5 , - 5,0 )

(Essay)
4.8/5
(31)

Find the work done by the force F=100i25j\mathbf { F } = 100 \mathbf { i } - 25 \mathbf { j } in moving an object from P(2,4)P ( - 2,4 ) to Q(150,5)Q ( 150,5 ) .

(Essay)
4.7/5
(35)
Showing 1 - 20 of 97
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)