Exam 10: Systems of Equations and Inequalities

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the distance between the points P(5,0,10)P ( 5,0,10 ) and Q(12,3,5)Q ( 12 , - 3,5 ) .

(Essay)
4.9/5
(36)

Given that the forces F1=(10,3)\mathbf { F } _ { 1 } = ( - 10,3 ) , F2=(4,1)\mathbf { F } _ { 2 } = ( - 4,1 ) and F3=4,10\mathbf{F}_{3}=\langle 4,-10\rangle are acting on a point pp , find the resultant force, magnitude and the additional force required in order for the forces to be in equilibrium.

(Essay)
4.8/5
(38)

Find uY\mathbf { u } \cdot \mathbf { Y } . u=3,2,v=6,2\mathbf { u } = \langle - 3,2 \rangle , \mathbf { v } = \langle 6 , - 2 \rangle

(Essay)
4.8/5
(35)

Find an equation of a sphere with the given radius r and center C. γ=7\gamma = \sqrt { 7 } ; C(3,1,0)C ( 3 , - 1,0 )

(Essay)
4.7/5
(37)

The lengths of two vectors a and b, and the angle between them, are given. Find the length of their cross product, a×b| \mathbf { a } \times \mathbf { b } | . Write the answer correct to three decimal places. a=0.12,b=1.25,θ=85| \mathbf { a } | = 0.12 , \mathbf { b } \mid = 1.25 , \theta = 85 ^ { \circ }

(Short Answer)
4.9/5
(43)

u=(12,2\mathbf { u } = \left( - \frac { 1 } { 2 } , 2 \right\rangle is orthogonal to v=(2,12)\mathbf { v } = \left( - 2 , \frac { 1 } { 2 } \right)

(True/False)
4.7/5
(30)

Find an equation of a sphere with the given radius r and center C. γ=10\gamma = \sqrt { 10 } ; C(10,0,1)C ( - 10,0,1 )

(Essay)
4.8/5
(28)

Find uY\mathbf { u } \cdot \mathbf { Y } . u=5,0),v=(3,1)\mathbf { u } = \langle 5,0 ) , \mathbf { v } = ( \sqrt { 3 } , 1 )

(Multiple Choice)
4.9/5
(26)

Express the given vector in terms of the unit vectors i, j, and k. (a,12a,4)\left( - a , - \frac { 1 } { 2 } a , 4 \right)

(Essay)
5.0/5
(37)

Find the distance between the points P(5,0,10)P ( 5,0,10 ) and Q(12,3,5)Q ( 12 , - 3,5 )

(Multiple Choice)
4.8/5
(38)

If the vector v has initial point P, what is its terminal point? v=(23,5,13),P(6,5,2)v = ( 23 , - 5,13 ) , P ( - 6,5,2 )

(Essay)
4.9/5
(37)

A water tank is in the shape of a sphere of radius 10 feet. The tank is supported on a metal circle 8 feet below the center of the sphere, as shown in the figure. Find the radius of the metal circle

(Multiple Choice)
4.9/5
(38)

Find uY\mathbf { u } \cdot \mathbf { Y } . u=3,2,v=6,2\mathbf { u } = \langle - 3,2 \rangle , \mathbf { v } = \langle 6 , - 2 \rangle

(Multiple Choice)
4.8/5
(32)

Find v| \mathrm { v } | and u+y| \mathbf { u } + \mathbf { y } | , given that u=j\mathbf { u } = - \mathbf { j } And v=i\mathbf { v } = \mathbf { i }

(Multiple Choice)
4.8/5
(39)

A man pulls a sled horizontally by exerting 321 b321 \mathrm {~b} on the rope that's tied to its front end. If the rope makes an angle of 4545 ^ { \circ } with horizontal, find the work done in moving the sled 5555 ft.

(Essay)
4.9/5
(42)

Given u=10,5\mathbf { u } = \langle 10,5 \rangle and v=(3,4)v = ( 3,4 ) , calculate projvu\mathrm { proj } _ { \mathbf { v } } \mathbf { u } and then resolve uu into u1\mathbf { u } _ { 1 } and u2\mathbf { u } _ { 2 } .

(Essay)
4.9/5
(42)

Find the component of uu along Y\mathbf { Y } If u=(6,7)\mathbf { u } = ( - 6,7 ) and v=(3,4)v = ( 3,4 )

(Multiple Choice)
4.9/5
(47)

The lengths of two vectors a and b, and the angle between them, are given. Find the length of their cross product, a×b| \mathbf { a } \times \mathbf { b } | . a=4,b=5,θ=60| \mathbf { a } | = 4 , \mathbf { b } \mid = 5 , \theta = 60 ^ { \circ }

(Essay)
4.9/5
(39)

Find a vector that is perpendicular to the plane passing through the three given points. P(3,4,5),Q(1,0,3),R(4,7,6)P ( 3,4,5 ) , Q ( 1,0,3 ) , R ( 4,7,6 )

(Essay)
4.9/5
(48)

Find an equation of the plane that passes through the points P, Q, and R. P(8,1,1),Q(5,2,0),R(0,0,0)P ( 8,1,1 ) , Q ( 5,2,0 ) , R ( 0,0,0 )

(Multiple Choice)
4.9/5
(36)
Showing 41 - 60 of 97
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)