Exam 1: The Nature of Econometrics

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

In some instances, a regression with r2 = .002 can be considered a good fit.

Free
(True/False)
4.7/5
(36)
Correct Answer:
Verified

True

Answer any 5 of the following A through F: A) Briefly explain in words how diplomatic parking fines can be used to predict the level of corruption in a nation. Also, write the econometric model used to make this prediction. B) Define psychometrics. C) Explain why minimizing the squared error terms is the premier method for fitting a line between observations considering that other options are available. D) Give 3 distinct reasons why a student may not reduce their study time given the information in the box on the right. GPAi=3.1+0.02STi+ei\mathrm { GPA } _ { \mathrm { i } } = 3.1 + 0.02 \mathrm { ST } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } } (0.14) (0.08) \leftarrow standard errors where GPA is grade point average ST is hours of study time on a typical day. r2=0.0002n=289\mathrm { r } ^ { 2 } = 0.0002 \quad \mathrm { n } = 289 E) Prove Σ(XiXˉ)2=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F. F. Prove Σ(YiYˉ)=0\Sigma \left( Y _ { i } - \bar { Y } \right) = 0

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

A) When diplomats rack up parking fines and don't pay them it may be a marker for the level of corruption in their home country. Diplomats from corrupt countries rack up more parking fines than those from less corrupt countries.
Level of Corruptioni = β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } unpaid parking fines per diplomati + ei
B) The empirical determination of psychological laws.
C) This technique yields 1) a unique line that has 2) desirable statistical qualities.
D) 1) The variables may be poorly measured.
2) Other factors aside from study time may come into play.
3) These results are for typical students and I'm not typical.
E) Σ(XiXˉ)2=Σ(XiXˉ)(XiXˉ)=ΣXi2XˉΣXiXˉΣXi+nXˉ2=ΣXi2XˉΣXi=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma \left( X _ { i } - \bar { X } \right) \left( X _ { i } - \bar { X } \right) = \Sigma X _ { i } { } ^ { 2 } - \bar { X } \Sigma X _ { i } - \bar { X } \Sigma X _ { i } + n \bar { X } ^ { 2 } = \Sigma X _ { i } ^ { 2 } - \bar { X } \Sigma X _ { i } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F) Σ(YiYˉ)=ΣYiΣYˉ=nYˉnYˉ=0\Sigma \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } - \Sigma \bar { Y } = n \bar { Y } - n \bar { Y } = 0

Unless all the observations lie on a straight line, it is impossible to fit a line such that ei2\sum e _ { i } ^ { 2 } = 0.

Free
(True/False)
4.9/5
(44)
Correct Answer:
Verified

True

Given 14 -1.2 -10 -2.3 11 7.8 Yi = β^0\hat { \beta } _ { 0 } - β^1\hat { \beta } _ { 1 } Xi + ei β^0\hat { \beta } _ { 0 } = 2.97 β^1\hat { \beta } _ { 1 } = 1.10 Calculate the value of the four ei's. Show your work making the details of your calculations apparent."

(Essay)
4.9/5
(33)

Equation 1 below is similar to the equation for r2, but not 100% correct.

(True/False)
4.7/5
(41)

Σ(XiXˉ)(YiYˉ)=ΣYiXiYˉΣXi\Sigma \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } X _ { i } - \bar { Y } \Sigma X _ { i }

(True/False)
4.8/5
(33)

Equation 3 below is the standard error of β^1\hat { \beta } _ { 1 }

(True/False)
4.9/5
(44)

Σ(Yiβ^0β^1Xi)2β^0\frac { \partial \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ^ { 2 } } { \partial \hat { \beta } _ { 0 } } = 2Σ(Yiβ^0β^1Xi)(1)2 \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ( - 1 )

(True/False)
4.9/5
(35)

Regression analysis and ordinary least-squares are the same method.

(True/False)
4.9/5
(37)

If r2 = 0.77, then 33% of the variation in Y is explained by variables other than the one in the regression.

(True/False)
4.8/5
(35)

Equation 2 below is similar to the equation for β^1\hat { \beta } _ { 1 } , but not 100% correct.

(True/False)
4.8/5
(36)

Equation 4 below is for the SER2.

(True/False)
4.8/5
(34)

=45.33-16.20+ (9.14) (14.27)\leftarrow standard errors SER =45.03=75.01=0.77=44 A) Interpret the structural parameters of the regression in the box above. B) How many observations were used to estimate the structural parameters? C) What is the estimated distance of an observation from the population regression line on average? D) Interpret the standard error of the constant term. E) If the structural parameters of this regression were re-calculated using a fresh set of data, would you be surprised if turned out to be -29.00? Explain. F) According to the SER, is the fit of this regression line adequate? Explain.

(Essay)
4.8/5
(32)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)