Exam 30: Portfolio Optimization with Negative Correlation: Finding Minimum Variance and Weight Allocation

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Exhibit 7B.l USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S) The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by: W1=[E(σ1)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } - \mathrm { r } _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] -Refer to Exhibit 7B.1.What is the value of W₁ when r₁.₂ = -1 and E(s₁)= .10 and E(s₂)= .12?

Free
(Multiple Choice)
5.0/5
(36)
Correct Answer:
Verified

D

Exhibit 7B.l USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S) The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by: W1=[E(σ1)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } - \mathrm { r } _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] -Refer to Exhibit 7B.1.Show the minimum portfolio variance for a portfolio of two risky assets when r₁.₂ = -1.

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

C

close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)