Exam 29: Portfolio Variance and Stock Weight Calculations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Exhibit 7A.1 W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] -Refer to Exhibit 7A.1.Show the minimum portfolio variance for a two stock portfolio when r1.2 = 1.

Free
(Multiple Choice)
4.8/5
(37)
Correct Answer:
Verified

A

Exhibit 7A.1 W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] -Refer to Exhibit 7A.1.What weight of security 1 gives the minimum portfolio variance when r1.2 = .60,E(?1)= .10 and E(?2)= .16?

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

E

close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)