Exam 4: Polynomials: Operations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Multiply. - (x+8)(x8)(x+8)(x-8)

(Multiple Choice)
4.8/5
(29)

Multiply. - (p+11q)(p11q)(p+11 q)(p-11 q)

(Multiple Choice)
4.8/5
(39)

Convert to decimal notation. - 5.771×1065.771 \times 10^{-6}

(Multiple Choice)
4.9/5
(39)

Multiply. - (7.1x12)(7.1+x12)\left(7.1-\mathrm{x}^{12}\right)\left(7.1+\mathrm{x}^{12}\right)

(Multiple Choice)
4.8/5
(40)

Multiply. - (2x+35)(2x35)\left(2 x+\frac{3}{5}\right)\left(2 x-\frac{3}{5}\right)

(Multiple Choice)
4.9/5
(44)

Collect like terms. - 7x9+8x3+2x97 \mathrm{x}^{9}+8 \mathrm{x}^{3}+2 \mathrm{x}^{9}

(Multiple Choice)
4.8/5
(40)

Solve the problem. -An object's altitude, in meters, is given by the polynomial h+vt4.9t2\mathrm{h}+\mathrm{vt}-4.9 \mathrm{t}^{2} , where h\mathrm{h} is the height in meters from which the launch occurs, v\mathrm{v} is the initial upward speed in meters per second, and tt is the number of seconds for which the rocket is airborne. A pebble is shot upward from the top of a building 191 meters tall. If the initial speed is 35 meters per second, how high above the ground will the pebble be after 2 seconds? Round results to the nearest tenth of a meter.

(Multiple Choice)
4.8/5
(35)

Multiply. - (x+y4)(x+y+4)(x+y-4)(x+y+4)

(Multiple Choice)
4.7/5
(37)

Divide. - 2x49x32x2x2\frac{2 x^{4}-9 x^{3}-2 x^{2}}{x^{2}}

(Multiple Choice)
4.7/5
(41)

Multiply. - (x11)(x3)(\mathrm{x}-11)(\mathrm{x}-3)

(Multiple Choice)
4.7/5
(31)

Divide and simplify. - t5t9\frac{t^{5}}{t^{9}}

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Find a polynomial for the perimeter of the figure. Solve the problem. -Find a polynomial for the perimeter of the figure.

(Multiple Choice)
4.8/5
(43)

Multiply mentally. - (10p1)(100p2+10p+1)(10 p-1)\left(100 p^{2}+10 p+1\right)

(Multiple Choice)
4.8/5
(45)

Subtract. - (9x7+8x983x8)(49x8+4x93x7)\left(-9 x^{7}+8 x^{9}-8-3 x^{8}\right)-\left(-4-9 x^{8}+4 x^{9}-3 x^{7}\right)

(Multiple Choice)
4.7/5
(35)

Multiply and simplify. - 511535^{11} \cdot 5^{-3}

(Multiple Choice)
4.8/5
(39)

Multiply mentally. - (a212)2\left(-\mathrm{a}^{2}-12\right)^{2}

(Multiple Choice)
4.9/5
(38)

Evaluate the polynomial. - 6x3+4x2x+306 x^{3}+4 x^{2}-x+30 , when x=2x=-2

(Multiple Choice)
4.8/5
(38)

Collect like terms and then arrange in descending order. - 12x614x4+12x5+7x610x5-12 x^{6}-14 x^{4}+12 x^{5}+7 x^{6}-10 x^{5}

(Multiple Choice)
4.8/5
(43)

Add. - (r+4 s+1)+(3r+s)+(s+4)(\mathrm{r}+4 \mathrm{~s}+1)+(-3 \mathrm{r}+\mathrm{s})+(\mathrm{s}+4)

(Multiple Choice)
4.8/5
(41)

Solve the problem. -An oval running track encircles a soccer field that is x\mathrm{x} yards wide and yy yards long (see figure). The area A\mathrm{A} of the region enclosed by the track can be calculated using the equation A=xy+π(x2)2\mathrm{A}=\mathrm{xy}+\pi\left(\frac{\mathrm{x}}{2}\right)^{2} . Calculate the area if x=84yd\mathrm{x}=84 \mathrm{yd} and y=108yd\mathrm{y}=108 \mathrm{yd} . Use the approximation π3.14\pi \approx 3.14 .  Solve the problem. -An oval running track encircles a soccer field that is  \mathrm{x}  yards wide and  y  yards long (see figure). The area  \mathrm{A}  of the region enclosed by the track can be calculated using the equation  \mathrm{A}=\mathrm{xy}+\pi\left(\frac{\mathrm{x}}{2}\right)^{2} . Calculate the area if  \mathrm{x}=84 \mathrm{yd}  and  \mathrm{y}=108 \mathrm{yd} . Use the approximation  \pi \approx 3.14 .

(Multiple Choice)
4.9/5
(36)
Showing 301 - 320 of 392
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)