Exam 11: Sequences, Series, and the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the common ratio, r, for the geometric sequence - 34,38,316,332,364,\frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \frac{3}{64}, \ldots

(Multiple Choice)
4.9/5
(34)

Simplify. - 5!3!2!\frac{5 !}{3 ! \cdot 2 !}

(Multiple Choice)
4.8/5
(33)

Find the sum - i=16(6i3)\sum_{i=1}^{6}(6 i-3)

(Multiple Choice)
4.9/5
(35)

Expand using the binomial theorem - (x5)4(x-5)^{4}

(Multiple Choice)
4.7/5
(31)

Find the indicated term. -Find the 17th term of the arithmetic sequence 5, 8, 11, ....

(Multiple Choice)
4.8/5
(39)

Find the indicated partial sum for the sequence with the given general term - s3,an=(n+2)(n6)\mathrm{s}_{3}, \mathrm{a}_{\mathrm{n}}=(\mathrm{n}+2)(\mathrm{n}-6)

(Multiple Choice)
4.7/5
(31)

Find the indicated partial sum for the sequence with the given general term - s4,an=2n9\mathrm{s} 4, \mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-9

(Multiple Choice)
4.7/5
(35)

Find the first five terms of the arithmetic sequence with the given first term and common difference - a1=6, d=1\mathrm{a}_{1}=6, \mathrm{~d}=-1

(Multiple Choice)
4.7/5
(30)

The Fibonacci sequence is a sequence whose first two terms are f1=1f_{1}=1 and f2=1f_{2}=1 , and all other terms are the sum of the two preceding terms. The terms of the Fibonacci sequence are often referred to as Fibonacci numbers. -One interesting fact about the Fibonacci numbers is that for any n3n \geq 3 , 2fnfn+1=fn22 \cdot f_{n}-f_{n+1}=f_{n}-2 . Select a Fibonacci number, and verify this fact.

(Essay)
4.9/5
(31)

For the given geometric sequence, find the limit of the infinite series, if it exists. - 3,1,13,19,3,1, \frac{1}{3}, \frac{1}{9}, \ldots

(Multiple Choice)
4.8/5
(44)

Use the formulas i=1ni=n(n+1)2,i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} , and i=1ni=531i2\sum_{i=1}^{n} -\sum_{i=5}^{31} i^{2}

(Multiple Choice)
4.7/5
(33)

For the given geometric sequence, find the limit of the infinite series, if it exists. - 3,34,316,364,3,-\frac{3}{4}, \frac{3}{16},-\frac{3}{64}, \ldots

(Multiple Choice)
4.9/5
(37)

Use the formulas i=1ni=n(n+1)2,i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} , and i=1ni=115(i2+i)\sum_{i=1}^{n} -\sum_{\mathrm{i}=1}^{15}\left(\mathrm{i}^{2}+\mathrm{i}\right)

(Multiple Choice)
4.8/5
(31)

Write the sum using summation notation - 17+18+19+110+111\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

(Multiple Choice)
4.9/5
(30)

Expand using the binomial theorem - (x+4)3(x+4)^{3}

(Multiple Choice)
4.8/5
(33)

Expand using the binomial theorem - (x1)6(x-1)^{6}

(Multiple Choice)
4.9/5
(35)

Find the indicated partial sum for the given sequence - s10,17,54,125,\mathrm{s} _{10},-17,54,125, \ldots

(Multiple Choice)
4.7/5
(31)

Find the general term, ana_n , of the given arithmetic sequence - 3,12,21,30,39,3,12,21,30,39, \ldots

(Multiple Choice)
4.9/5
(38)

Expand using the binomial theorem - (x+3y)5(x+3 y)^{5}

(Multiple Choice)
4.9/5
(32)

Use an infinite geometric series to rewrite the repeating decimal as a lowest-terms fraction - 0.570 . \overline{57}

(Multiple Choice)
4.8/5
(35)
Showing 121 - 140 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)