Exam 1: Fundamentals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

An industrial plant consisting primarily of induction motor loads absorbs 1000 kW1000 \mathrm{~kW} at 0.7 power factor lagging. (a) Compute the required kVA rating of a shunt capacitor to improve the power factor to 0.9 lagging. (b) Calculate the resulting power factor if a synchronous motor rated 1000hp1000 \mathrm{hp} with 90%90 \% efficiency operating at rated load and at unity power factor is added to the plant instead of the capacitor. Assume constant voltage. (1hp=0.746 kW)(1 \mathrm{hp}=0.746 \mathrm{~kW})

Free
(Essay)
4.7/5
(41)
Correct Answer:
Verified

(a)  (a)     \begin{aligned} \phi_{L} & =\cos ^{-1} 0.7=45.57^{\circ} \\ Q_{L} & =P \tan \phi_{L}=1000 \tan \left(43.57^{\circ}\right) \\ & =1020.2 \mathrm{kVAR} \\ \phi_{S} & =\cos ^{-1} 0.9=25.84^{\circ} \\ Q_{S} & =P \tan \phi_{S}=1000 \tan \left(25.84^{\circ}\right)=484.3 \mathrm{kVAR} \\ Q_{C} & =Q_{L}-Q_{S}=1020.2-484.3=535.9 \mathrm{kVAR} \\ S_{C} & =Q_{C}=535.9 \mathrm{kVA} \end{aligned}  (b) Synchronous motor absorbs  P_{m}=\frac{1000 \times 0.746}{0.9}=828.9 \mathrm{~kW}  and  Q_{m}=0 \mathrm{kVAR}   \begin{aligned} \text { Source } p f & =\cos \left[\tan ^{-1} \frac{1020.2}{1828.9}\right] \\ & =0.873 \text { Lagging } \end{aligned}
ϕL=cos10.7=45.57QL=PtanϕL=1000tan(43.57)=1020.2kVARϕS=cos10.9=25.84QS=PtanϕS=1000tan(25.84)=484.3kVARQC=QLQS=1020.2484.3=535.9kVARSC=QC=535.9kVA\begin{aligned}\phi_{L} & =\cos ^{-1} 0.7=45.57^{\circ} \\Q_{L} & =P \tan \phi_{L}=1000 \tan \left(43.57^{\circ}\right) \\& =1020.2 \mathrm{kVAR} \\\phi_{S} & =\cos ^{-1} 0.9=25.84^{\circ} \\Q_{S} & =P \tan \phi_{S}=1000 \tan \left(25.84^{\circ}\right)=484.3 \mathrm{kVAR} \\Q_{C} & =Q_{L}-Q_{S}=1020.2-484.3=535.9 \mathrm{kVAR} \\S_{C} & =Q_{C}=535.9 \mathrm{kVA}\end{aligned}
(b) Synchronous motor absorbs Pm=1000×0.7460.9=828.9 kWP_{m}=\frac{1000 \times 0.746}{0.9}=828.9 \mathrm{~kW} and Qm=0kVARQ_{m}=0 \mathrm{kVAR}
 Source pf=cos[tan11020.21828.9]=0.873 Lagging \begin{aligned}\text { Source } p f & =\cos \left[\tan ^{-1} \frac{1020.2}{1828.9}\right] \\& =0.873 \text { Lagging }\end{aligned}
 (a)     \begin{aligned} \phi_{L} & =\cos ^{-1} 0.7=45.57^{\circ} \\ Q_{L} & =P \tan \phi_{L}=1000 \tan \left(43.57^{\circ}\right) \\ & =1020.2 \mathrm{kVAR} \\ \phi_{S} & =\cos ^{-1} 0.9=25.84^{\circ} \\ Q_{S} & =P \tan \phi_{S}=1000 \tan \left(25.84^{\circ}\right)=484.3 \mathrm{kVAR} \\ Q_{C} & =Q_{L}-Q_{S}=1020.2-484.3=535.9 \mathrm{kVAR} \\ S_{C} & =Q_{C}=535.9 \mathrm{kVA} \end{aligned}  (b) Synchronous motor absorbs  P_{m}=\frac{1000 \times 0.746}{0.9}=828.9 \mathrm{~kW}  and  Q_{m}=0 \mathrm{kVAR}   \begin{aligned} \text { Source } p f & =\cos \left[\tan ^{-1} \frac{1020.2}{1828.9}\right] \\ & =0.873 \text { Lagging } \end{aligned}

Consider a single-phase loadwith an applied voltage Consider a single-phase loadwith an applied voltage     volts and load current    (a) Determinethe power triangle.  (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging. volts and load current Consider a single-phase loadwith an applied voltage     volts and load current    (a) Determinethe power triangle.  (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging. (a) Determinethe power triangle. (b) Find the power factor and specify whether it islagging or leading. (c) Calculate the reactive power supplied by capacitors in parallel with the load that correctthe power factor to 0.9 lagging.

Free
(Essay)
4.7/5
(30)
Correct Answer:
Verified

a. a.   b.pf=cos 60°=0.5 Lagging c.  b.pf=cos 60°=0.5 Lagging
c. a.   b.pf=cos 60°=0.5 Lagging c.

Three identical impedances ZΔ=20/60ΩZ_{\Delta}=20 / 60^{\circ} \Omega are connected in Δ\Delta to a balanced threephase 480V480-\mathrm{V} source by three identical line conductors with impedance ZL=Z_{\mathrm{L}}= (0.8+j0.6)Ω(0.8+j 0.6) \Omega per line. (a) Calculate the line-to-line voltage at the load terminals. (b) Repeat part (a) when a Δ\Delta -connected capacitor bank with reactance (j20)Ω(-j 20) \Omega per phase is connected in parallel with the load.

Free
(Essay)
4.8/5
(44)
Correct Answer:
Verified

(a)
 (a)     Using voltage division:  \bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Z}_{\Delta} / 3}{\left(Z_{\Delta} / 3\right)+\bar{Z}_{L I N E}}   \bar{V}_{A N}=\frac{208}{\sqrt{3}} \frac{6.667 \angle 60^{\circ}}{6.667 \angle 60^{\circ}+(0.8+j 0.6)}=105.4 \angle 2.96^{\circ} \mathrm{V}  Load voltage  V_{A B}=\sqrt{3} 105.4=182.6 \mathrm{~V}(\mathrm{~L}-\mathrm{L})  (b)      \begin{aligned} & \bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Ƶ}_{e q}}{\bar{Ƶ}_{e q}+\bar{Ƶ}_{L I N E}} ; \bar{Ƶ}_{e q}=\left(6.667 \angle 60^{\circ}\right) \|(-j 6.667) \\ & =12.88 \angle-15^{\circ} \Omega \\ & \bar{V}_{A N}=\left(\frac{208}{\sqrt{3}} \angle 0^{\circ}\right)\left[\frac{12.88 \angle-15^{\circ}}{\left(12.88 \angle-15^{\circ}\right)+0.8+j 0.6}\right]=114.4 \angle-3.35^{\circ} \mathrm{V} \end{aligned}  The load line to line voltage is  V_{A B}=\sqrt{3} 114.4=198.1 \mathrm{~V}
Using voltage division: VˉAN=VˉanZˉΔ/3(ZΔ/3)+ZˉLINE\bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Z}_{\Delta} / 3}{\left(Z_{\Delta} / 3\right)+\bar{Z}_{L I N E}}
VˉAN=20836.667606.66760+(0.8+j0.6)=105.42.96V\bar{V}_{A N}=\frac{208}{\sqrt{3}} \frac{6.667 \angle 60^{\circ}}{6.667 \angle 60^{\circ}+(0.8+j 0.6)}=105.4 \angle 2.96^{\circ} \mathrm{V}
Load voltage VAB=3105.4=182.6 V( LL)V_{A B}=\sqrt{3} 105.4=182.6 \mathrm{~V}(\mathrm{~L}-\mathrm{L})
(b)
 (a)     Using voltage division:  \bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Z}_{\Delta} / 3}{\left(Z_{\Delta} / 3\right)+\bar{Z}_{L I N E}}   \bar{V}_{A N}=\frac{208}{\sqrt{3}} \frac{6.667 \angle 60^{\circ}}{6.667 \angle 60^{\circ}+(0.8+j 0.6)}=105.4 \angle 2.96^{\circ} \mathrm{V}  Load voltage  V_{A B}=\sqrt{3} 105.4=182.6 \mathrm{~V}(\mathrm{~L}-\mathrm{L})  (b)      \begin{aligned} & \bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Ƶ}_{e q}}{\bar{Ƶ}_{e q}+\bar{Ƶ}_{L I N E}} ; \bar{Ƶ}_{e q}=\left(6.667 \angle 60^{\circ}\right) \|(-j 6.667) \\ & =12.88 \angle-15^{\circ} \Omega \\ & \bar{V}_{A N}=\left(\frac{208}{\sqrt{3}} \angle 0^{\circ}\right)\left[\frac{12.88 \angle-15^{\circ}}{\left(12.88 \angle-15^{\circ}\right)+0.8+j 0.6}\right]=114.4 \angle-3.35^{\circ} \mathrm{V} \end{aligned}  The load line to line voltage is  V_{A B}=\sqrt{3} 114.4=198.1 \mathrm{~V}
VˉAN=VˉanƵˉeqƵˉeq+ƵˉLINE;Ƶˉeq=(6.66760)(j6.667)=12.8815ΩVˉAN=(20830)[12.8815(12.8815)+0.8+j0.6]=114.43.35V\begin{aligned}& \bar{V}_{A N}=\bar{V}_{a n} \frac{\bar{Ƶ}_{e q}}{\bar{Ƶ}_{e q}+\bar{Ƶ}_{L I N E}} ; \bar{Ƶ}_{e q}=\left(6.667 \angle 60^{\circ}\right) \|(-j 6.667) \\& =12.88 \angle-15^{\circ} \Omega \\& \bar{V}_{A N}=\left(\frac{208}{\sqrt{3}} \angle 0^{\circ}\right)\left[\frac{12.88 \angle-15^{\circ}}{\left(12.88 \angle-15^{\circ}\right)+0.8+j 0.6}\right]=114.4 \angle-3.35^{\circ} \mathrm{V}\end{aligned}
The load line to line voltage is VAB=3114.4=198.1 VV_{A B}=\sqrt{3} 114.4=198.1 \mathrm{~V}

The real power delivered by a source to two impedances, Z1\mathrm{Z}_{1} =3+j5 W=3+j 5 \mathrm{~W} and Z2=10 W\mathrm{Z}_{2}=10 \mathrm{~W} , connected in parallel, is 2000 W2000 \mathrm{~W} . Determine (a) the real power absorbed by each of the impedances and (b) the source current.

(Essay)
4.7/5
(37)

The instantaneous voltage across a circuit is v(t)=678.8sinv(t)=678.8 \sin (ωt15)\left(\omega t-15^{\circ}\right) volts, and the instantaneous current entering the positive terminal if the circuit element is i(t)=200cos(ωt5)i(t)=200 \cos \left(\omega t-5^{\circ}\right) A. For these circuit elements, calculate (a) the instantaneous power absorbed, (b) the real power (state whether it is delivered or absorbed), (c) the reactive power (state whether delivered or absorbed), (d) the power factor (state whether lagging or leading).

(Essay)
4.7/5
(37)

if the resistor and capacitor are connected in series.

(Essay)
4.9/5
(30)

A three-phase 25-kVA, 208-V, 60-Hz alternator, operating under balanced steady-state conditions, supplies a line current of 20 A per phase at a 0.8 lagging power factor and at rated voltage. Determine the power triangle for this operating condition.

(Essay)
4.9/5
(38)

A circuit consists of two impedances, Z1=2030ΩZ_{1}=20 \angle 30^{\circ} \Omega and Z2=14.1445ΩZ_{2}=14.14 \angle-45^{\circ} \Omega , in parallel, supplied by a source voltage V=10060V=100 \angle 60^{\circ} volts. Determine the power triangle for each of the impedances and for the source.

(Essay)
4.8/5
(47)

The voltage v(t)=678.8cos(ωt+45)v(t)=678.8 \cos \left(\omega t+45^{\circ}\right) volts is applied to a load consisting of a 10W10-\mathrm{W} resistor in parallel with a capacitive reactance XC=25 W\mathrm{X}_{\mathrm{C}}=25 \mathrm{~W} . Calculate (a) the instantaneous power absorbed by the resistor, (b) the instantaneous power absorbed by the capacitor, (c) the real power absorbed by the resistor, (d) the reactive power delivered by the capacitor, (e) the load power factor.

(Essay)
4.8/5
(31)

A single-phase source has a terminal voltage V=1200V=120 \angle 0^{\circ} volts and a current I=2530AI=25 \angle 30^{\circ} \mathrm{A} , which leaves the positive terminal of the source. Determine the real and reactive power, and state whether the source is delivering or absorbing each.

(Essay)
4.9/5
(40)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)