Exam 14: Pricing Techniques and Analysis

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Third-degree price discrimination exists whenever:

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

C

Which of the statements about price discrimination is (are)false?

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

C

Consolidated Salt Company sells table salt to both retail grocery chains and commercial users (e.g.,bakeries,snack food makers,etc.).The demand function for each of these markets is: Retail grocery chains: =180-8 Commercial users: =100-4 where P1 and P2 are the prices charged and Q1 and Q2 are the quantities sold in the respective markets.Consolidated's total cost function (which includes a "normal" return to the owners)for salt is: TC=50+20(Q1+Q2)\mathrm { TC } = 50 + 20 \left( \mathrm { Q } _ { 1 } + \mathrm { Q } _ { 2 } \right) (a) Determine Consolidated's total profit function. Assuming that Consolidated is effectively able to charge different prices in the two (b) markets, what are the profit-maximizing price and output levels for the product in the two markets? What is Consolidated's total profit under this condition? Assuming that Consolidated is required to charge the same price in each market, what are (c) the profit-maximizing price and output levels? What is Consolidated's total profit under this condition?

Free
(Essay)
4.8/5
(34)
Correct Answer:
Verified

(a)? = TR ? TC = P1Q1 + P2Q2 ? TC = (180 ? 8Q1)Q1 + (100 ?4Q2)Q2 ? [50 + 20(Q1 + Q2)] = 180Q1 ? 8Q12 + 100Q2 ? 4Q22 ? 50 ? 20Q1 ? 20Q2 = ?50 + 160Q1 + 80Q2 ? 8Q12 ? 4Q22 (b)  (a)? = TR ? TC = P<sub>1</sub>Q<sub>1</sub> + P<sub>2</sub>Q<sub>2</sub> ? TC = (180 ? 8Q<sub>1</sub>)Q<sub>1</sub> + (100 ?4Q<sub>2</sub>)Q<sub>2</sub> ? [50 + 20(Q<sub>1</sub> + Q<sub>2</sub>)] = 180Q<sub>1</sub> ? 8Q<sub>1</sub><sup>2</sup> + 100Q<sub>2</sub> ? 4Q<sub>2</sub><sup>2</sup> ? 50 ? 20Q<sub>1</sub> ? 20Q<sub>2</sub> = ?50 + 160Q<sub>1</sub> + 80Q<sub>2</sub> ? 8Q<sub>1</sub><sup>2</sup> ? 4Q<sub>2</sub><sup>2</sup> (b)   <sub> </sub>  \begin{aligned} \frac { \partial \pi } { \partial Q _ { 1 } } & = 0 \\ \frac { \partial \pi } { \partial Q _ { 1 } } & = 160 - 16 \mathrm { Q } _ { 1 } \\ 0 & = 160 - 16 \mathrm { Q } _ { 1 } ^ { * } \\ \mathrm { Q } _ { 1 } ^ { * } & = 10 \text { units } \\ \mathrm { P } _ { 1 } ^ { * } & = 180 - 8 ( 10 ) \\ & = \$ 100 / \text { unit } \end{aligned}   \begin{array} { l }  \frac { \partial \pi } { \partial Q _ { 2 } } = 0 \text { (conditions for maximizing } \pi \text { ) } \\\\ \frac { \partial \pi } { \partial Q _ { 2 } } = 80 - 8 Q _ { 2 } \\\\ 0 = 80 - 8 Q _ { 2 } ^ { * } \\\\ Q _ { 2 } ^ { * } = 10 \text { units } \\\\ P _ { 2 } ^ { * } = 100 - 4 ( 10 ) \\\\ = \$ 60 / \text { unit } \end{array}   \begin{aligned} \pi ^ { * } & = - 50 + 160 ( 10 ) + 80 ( 10 ) - 80 ( 10 ) ^ { 2 } - 4 ( 10 ) ^ { 2 } \\ & = \$ 1150 \end{aligned}  (c)180 ? 8Q<sub>1</sub> = 100 ? 4Q<sub>2</sub>  \begin{aligned} Q _ { 2 } & = \frac { - 80 + 8 Q _ { 1 } } { 4 } \\ & = - 20 + 2 Q _ { 1 } \end{aligned}  ? = ?50 + 160Q<sub>1</sub> + 80(?20 + 2Q<sub>1</sub>)? 8Q<sub>1</sub><sup>2</sup> ? 4(?20 + 2Q<sub>1</sub>)<sup>2</sup> = ?50 + 160Q<sub>1</sub> ? 1600 + 160Q<sub>1</sub> ? 8Q<sub>1</sub><sup>2</sup> ? 1600 + 320Q<sub>1</sub> ? 16Q<sub>1</sub><sup>2</sup> = ?3250 + 640Q<sub>1</sub> ? 24Q<sub>1</sub><sup>2</sup>  \frac { \mathrm { d } \pi } { \mathrm { dQ } } = 0  (condition for maximizing  \left. \pi \right)   \frac { \mathrm { d } \pi } { \mathrm { dQ } _ { 1 } } = 640 - 48 \mathrm { Q } _ { 1 }   0 = 640 - 480 Q _ { 1 } ^ { * }   Q _ { 1 } ^ { * } = 13.33 \text { units }   \begin{aligned} Q _ { 2 } ^ { * } & = - 20 + 2 ( 13.33 ) \\ & = 6.67 \text { units } \end{aligned}   \begin{aligned} \mathrm { Q } ^ { * } & = \mathrm { Q }^ { * } _ { 1 } + \mathrm { Q }^ { * } _ { 2 } \\ & = 13.33 + 6.67 \\ & = 20 \text { units } \end{aligned}   \begin{aligned} P ^ { * } & = P _ { 2 } ^ { * } = 180 - 8 ( 13.33 ) \\ & = \$ 73.36 / \text { unit } \end{aligned}   \begin{aligned} \pi & = - 3250 + 640 ( 13.33 ) - 24 ( 13.33 ) ^ { 2 } \\ & = \$ 1,016.67 \end{aligned} πQ1=0πQ1=16016Q10=16016Q1Q1=10 units P1=1808(10)=$100/ unit \begin{aligned}\frac { \partial \pi } { \partial Q _ { 1 } } & = 0 \\\frac { \partial \pi } { \partial Q _ { 1 } } & = 160 - 16 \mathrm { Q } _ { 1 } \\0 & = 160 - 16 \mathrm { Q } _ { 1 } ^ { * } \\\mathrm { Q } _ { 1 } ^ { * } & = 10 \text { units } \\\mathrm { P } _ { 1 } ^ { * } & = 180 - 8 ( 10 ) \\& = \$ 100 / \text { unit }\end{aligned} πQ2=0 (conditions for maximizing π ) πQ2=808Q20=808Q2Q2=10 units P2=1004(10)=$60/ unit \begin{array} { l } \frac { \partial \pi } { \partial Q _ { 2 } } = 0 \text { (conditions for maximizing } \pi \text { ) } \\\\\frac { \partial \pi } { \partial Q _ { 2 } } = 80 - 8 Q _ { 2 } \\\\0 = 80 - 8 Q _ { 2 } ^ { * } \\\\Q _ { 2 } ^ { * } = 10 \text { units } \\\\P _ { 2 } ^ { * } = 100 - 4 ( 10 ) \\\\= \$ 60 / \text { unit }\end{array} π=50+160(10)+80(10)80(10)24(10)2=$1150\begin{aligned}\pi ^ { * } & = - 50 + 160 ( 10 ) + 80 ( 10 ) - 80 ( 10 ) ^ { 2 } - 4 ( 10 ) ^ { 2 } \\& = \$ 1150\end{aligned} (c)180 ? 8Q1 = 100 ? 4Q2 Q2=80+8Q14=20+2Q1\begin{aligned}Q _ { 2 } & = \frac { - 80 + 8 Q _ { 1 } } { 4 } \\& = - 20 + 2 Q _ { 1 }\end{aligned} ? = ?50 + 160Q1 + 80(?20 + 2Q1)? 8Q12 ? 4(?20 + 2Q1)2 = ?50 + 160Q1 ? 1600 + 160Q1 ? 8Q12 ? 1600 + 320Q1 ? 16Q12 = ?3250 + 640Q1 ? 24Q12 dπdQ=0\frac { \mathrm { d } \pi } { \mathrm { dQ } } = 0 (condition for maximizing π)\left. \pi \right)
dπdQ1=64048Q1\frac { \mathrm { d } \pi } { \mathrm { dQ } _ { 1 } } = 640 - 48 \mathrm { Q } _ { 1 }
0=640480Q10 = 640 - 480 Q _ { 1 } ^ { * }
Q1=13.33 units Q _ { 1 } ^ { * } = 13.33 \text { units } Q2=20+2(13.33)=6.67 units \begin{aligned}Q _ { 2 } ^ { * } & = - 20 + 2 ( 13.33 ) \\& = 6.67 \text { units }\end{aligned} Q=Q1+Q2=13.33+6.67=20 units \begin{aligned}\mathrm { Q } ^ { * } & = \mathrm { Q }^ { * } _ { 1 } + \mathrm { Q }^ { * } _ { 2 } \\& = 13.33 + 6.67 \\& = 20 \text { units }\end{aligned} P=P2=1808(13.33)=$73.36/ unit \begin{aligned}P ^ { * } & = P _ { 2 } ^ { * } = 180 - 8 ( 13.33 ) \\& = \$ 73.36 / \text { unit }\end{aligned} π=3250+640(13.33)24(13.33)2=$1,016.67\begin{aligned}\pi & = - 3250 + 640 ( 13.33 ) - 24 ( 13.33 ) ^ { 2 } \\& = \$ 1,016.67\end{aligned}

[Appendix; Advanced Material] If airlines found that the number of no-shows starts to increase,then its policy for optimal overbooking would tend to:

(Multiple Choice)
4.8/5
(35)

Firms must prevent resale between segments using a variety of: ​

(Multiple Choice)
4.8/5
(31)

[Appendix; Advanced Material] If an airline company decides to buy smaller jets with fewer seats,then the problem of:

(Multiple Choice)
4.9/5
(34)

The following are possible examples of price discrimination,EXCEPT:

(Multiple Choice)
5.0/5
(42)

Second-degree price discrimination:

(Multiple Choice)
4.9/5
(38)

Barbers give a price discount to kids.According to price discrimination,if barbers use price discrimination,this implies demand for hair cuts by kids is more elastic.

(True/False)
4.9/5
(30)

Vacation tours to Europe invariably package visits to disparate regions: cities,mountains,and the seaside.Bundling,a type of second degree price discrimination,is most profitable when:

(Multiple Choice)
4.8/5
(37)

​Firms should begin their pricing decisions by:

(Multiple Choice)
4.8/5
(35)

[Appendix; Advanced Material] Restaurants try to buy just enough fish to match the expected walk-ins and reservations.If they buy a lot more fish,in the language of revenue management:

(Multiple Choice)
4.8/5
(34)

In ____ price discrimination,the monopolist charges each consumer the highest price that purchaser is willing to pay for each unit purchased (provided that this price exceeds the marginal cost of production).

(Multiple Choice)
4.8/5
(26)

To maximize profits,a monopolist that engages in price discrimination must allocate output in such a way as to make identical the ____ in all markets.

(Multiple Choice)
4.8/5
(34)

Which of the following pricing policies best identifies when a product should be expanded,maintained,or discontinued?

(Multiple Choice)
4.9/5
(32)

[Appendix: Advanced Material] Cross functional revenue management examines capacity,pricing,and customer account management in order to maximize revenue.If the MegaPlex Movie Theater finds that too often they have to turn customers away from their theaters at peak movie times for blockbusters creating too much slippage,cross functional revenue management suggests:

(Multiple Choice)
4.7/5
(27)

The optimal mark-up is: m = -1/ (E+1).When the mark-up on cookware equals 50%,then demand elasticity (E)for cookware is:

(Multiple Choice)
4.8/5
(40)

____ is a new product pricing strategy which results in a high initial product price.This price is reduced over time as demand at the higher price is satisfied.

(Multiple Choice)
4.8/5
(32)

The segmenting of customers into several small groups such as household,institutional,commercial,and industrial users,and establishing a different rate schedule for each group is known as:

(Multiple Choice)
4.8/5
(29)

Firms that have a cover charge for their customers and charge for each item they purchase as well are exhibiting

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 22
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)