Solved

Rewrite i=1n4i+2n2\sum _ { i = 1 } ^ { n } \frac { 4 i + 2 } { n ^ { 2 } }

Question 26

Multiple Choice

Rewrite i=1n4i+2n2\sum _ { i = 1 } ^ { n } \frac { 4 i + 2 } { n ^ { 2 } } as a rational function S(n) and find limS(n) \lim S ( n ) .


A) S(n) =2(n+1) +2n,limnS(n) =2S ( n ) = \frac { 2 ( n + 1 ) + 2 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 2
B) S(n) =2(n+1) +2n2,limnS(n) =0S ( n ) = \frac { 2 ( n + 1 ) + 2 } { n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = 0
C) S(n) =2(n+1) +2n,limnS(n) =4S ( n ) = \frac { 2 ( n + 1 ) + 2 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 4
D) S(n) =2(n+1) 2n,limnS(n) =0S ( n ) = \frac { 2 ( n + 1 ) 2 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 0
E) S(n) =2n(n+1) +2n2,limnS(n) =2S ( n ) = \frac { 2 n ( n + 1 ) + 2 } { n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions