Solved

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

Question 29

Multiple Choice

Find limh0f(x+h) f(x) h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x) =2x+1f ( x ) = 2 x + 1


A) limh0f(x+h) f(x) h=3\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 3
B) limh0f(x+h) f(x) h=2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2
C) limh0f(x+h) f(x) h=1\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 1
D) limh0f(x+h) f(x) h=3\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 3
E) limh0f(x+h) f(x) h=2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions