Solved

Find the Limit of the Sequence (If It Exists) αn=(n+6)!n!\alpha _ { n } = \frac { ( n + 6 ) ! } { n ! }

Question 144

Multiple Choice

Find the limit of the sequence (if it exists) . αn=(n+6) !n!\alpha _ { n } = \frac { ( n + 6 ) ! } { n ! }


A) limnαn=6\lim_ { n \rightarrow \infty }\alpha _ { n } = - 6
B) limnαn=0\lim_ { n \rightarrow \infty } \alpha _ { n } = 0
C) limnαn=1\lim_ { n \rightarrow \infty } \alpha _ { n } = 1
D) limnαn=6\lim_ { n \rightarrow \infty } \alpha _ { n } = 6
E) limnan=\lim _ { n \rightarrow \infty }a _ { n } = \infty

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions