Solved

Find the Limit (If It Exists) limxπ/24(cosx1)sinx\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x }

Question 148

Multiple Choice

Find the limit (if it exists) . limxπ/24(cosx1) sinx\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x }


A) limxπ/24(cosx1) sinx=16\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x } = - 16
B) limxπ/24(cosx1) sinx=4\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x } = - 4
C) limxπ/24(cosx1) sinx=20\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x } = 20
D) limxπ/24(cosx1) sinx=16\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x } = 16
E) limxπ/24(cosx1) sinx=4\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x } = 4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions