Solved

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

Question 181

Multiple Choice

Find limh0f(x+h) f(x) h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x) =x8f ( x ) = \sqrt { x - 8 }


A) limh0f(x+h) f(x) h=12x7\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = \frac { 1 } { 2 \sqrt { x - 7 } }
B) limh0f(x+h) f(x) h=12x10\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 1 } { 2 \sqrt { x - 10 } }
C) limh0f(x+h) f(x) h=12x8\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 1 } { 2 \sqrt { x - 8 } }
D) limh0f(x+h) f(x) h=12x10\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = \frac { 1 } { 2 \sqrt { x - 10 } }
E) limh0f(x+h) f(x) h=12x8\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = \frac { 1 } { 2 \sqrt { x - 8 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions