Solved

Find the Derivative of the Function w(x)=2sec(x)tan(x22)w ( x ) = 2 \sec ( x ) \cdot \tan \left( x ^ { 2 } - 2 \right)

Question 18

Multiple Choice

Find the derivative of the function. w(x) =2sec(x) tan(x22) w ( x ) = 2 \sec ( x ) \cdot \tan \left( x ^ { 2 } - 2 \right)


A) w(x) =2sec2xsinxtan(x22) +4xsecxsec2(x22) w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 2 \right)
B) w(x) =2sec2xsinxtan(x22) +4xsecxsec2(2x2) w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
C) w(x) =2sec2xsinxtan(x2+2) +4xsecxsec2(2x2) w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } + 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
D) w(x) =2sec2xsinxtan(x22) w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right)
E) w(x) =2sec2xsinxtan(x22) +4xsecxsec2(x24) w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 4 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions