Solved

Recall That the Average of a Function f(x)f ( x )

Question 13

Multiple Choice

Recall that the average of a function f(x) f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x) dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Calculate the 9-unit moving average of the function.
f(x) =cos(πx18) f ( x ) = \cos \left( \frac { \pi x } { 18 } \right)


A) fˉ(x) =2π(sin(πx18) cos(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 18 } \right) \right)
B) fˉ(x) =2π(sin(πx18) cos(πx3) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 3 } \right) \right)
C) fˉ(x) =2π(sin(πx18) +cos(πx2) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 2 } \right) \right)
D) fˉ(x) =2π(cos(πx18) sin(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \cos \left( \frac { \pi x } { 18 } \right) - \sin \left( \frac { \pi x } { 18 } \right) \right)
E) fˉ(x) =2π(sin(πx18) +cos(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 18 } \right) \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions