Solved

Find the Derivative of the Function y(x)=7cos(ex)+9excosxy ( x ) = 7 \cos \left( e ^ { x } \right) + 9 e ^ { x } \cos x

Question 14

Multiple Choice

Find the derivative of the function. y(x) =7cos(ex) +9excosxy ( x ) = 7 \cos \left( e ^ { x } \right) + 9 e ^ { x } \cos x


A) y(x) =ex(7sin(ex) +9cosx9sinx) y' ( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x \right)
B) y(x) =7sin(ex) +9sinx9cosxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \sin x - 9 \cos x
C) y(x) =7sin(ex) +9cosx9sinxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x
D) y(x) =ex(7sin(ex) 9cosx+9sinx) y '( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)
E) y(x) =ex2(7sin(ex) 9cosx+9sinx) y ^ { \prime } ( x ) = e ^ { x ^ { 2 } } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions