Solved

Find the General Solution of the Differential Equation dy dx=(x+1)y2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( x + 1 ) y ^ { 2 }

Question 24

Multiple Choice

Find the general solution of the differential equation. dy dx=(x+1) y2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( x + 1 ) y ^ { 2 }
Solve for y as a function of x.


A) y=(x+1) 2+Cy = - ( x + 1 ) ^ { 2 } + C
B) y=2x2+Cy = - \frac { 2 } { x ^ { 2 } + C }
C) y=2x(x+2) +Cy = - \frac { 2 } { x ( x + 2 ) + C }
D) y=C(x+1) 2y = \frac { C } { ( x + 1 ) ^ { 2 } }
E) y=2x+Cy = - \frac { 2 } { x + C }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions