Solved

Find the General Solution of the Differential Equation dy dx=1(x+3)y2\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { ( x + 3 ) y ^ { 2 } }

Question 103

Multiple Choice

Find the general solution of the differential equation. dy dx=1(x+3) y2\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { ( x + 3 ) y ^ { 2 } }
Solve for y as a function of x.


A) y=3lnx+C3y = \sqrt [ 3 ] { 3 \ln x + C }
B) y=3lnx+3+C3y = 3 \sqrt [ 3 ] { \ln | x + 3 | + C }
C) y=3lnx+3+C3y = \sqrt [ 3 ] { 3 \ln | x + 3 | + C }
D) y=3ln(x+3) +C3y = \sqrt [ 3 ] { 3 \ln ( x + 3 ) + C }
E) y=(3lnx+3+C) 3y = ( 3 \ln | x + 3 | + C ) ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions