Solved

The Velocity of a Particle Moving in a Straight Line v=t(t2+6)4+3tv = t \left( t ^ { 2 } + 6 \right) ^ { 4 } + 3 t

Question 61

Multiple Choice

The velocity of a particle moving in a straight line is given by v=t(t2+6) 4+3tv = t \left( t ^ { 2 } + 6 \right) ^ { 4 } + 3 t .
Find an expression for the position s after time t.


A) s(t) =(t2+6) 510+3t2+Cs ( t ) = \frac { \left( t ^ { 2 } + 6 \right) ^ { 5 } } { 10 } + 3 t ^ { 2 } + C
B) s(t) =(t2+6) 55+3t22+Cs ( t ) = \frac { \left( t ^ { 2 } + 6 \right) ^ { 5 } } { 5 } + \frac { 3 t ^ { 2 } } { 2 } + C
C) s(t) =(t2+6) 510+3t22+Cs ( t ) = \frac { \left( t ^ { 2 } + 6 \right) ^ { 5 } } { 10 } + \frac { 3 t ^ { 2 } } { 2 } + C
D) s(t) =t(t2+6) 510+3t22+Cs ( t ) = \frac { t \left( t ^ { 2 } + 6 \right) ^ { 5 } } { 10 } + \frac { 3 t ^ { 2 } } { 2 } + C
E) s(t) =(t2+6) 510+3t2+Cs ( t ) = \frac { \left( t ^ { 2 } + 6 \right) ^ { 5 } } { 10 } + \frac { 3 t } { 2 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions