Solved

Let S Be the Sphere of Radius 4 Centered at the Origin

Question 4

Multiple Choice

Let S be the sphere of radius 4 centered at the origin, oriented outward. Find n\vec { n } , the unit normal vector to S in the direction of orientation.


A) n=x4i+y4j+z4k\vec { n } = \frac { x } { 4 } \vec { i } + \frac { y } { 4 } \vec { j } + \frac { z } { 4 } \vec { k }
B) n=xi+yj+zk\vec { n } = x \vec { i } + y \vec { j } + z \vec { k }
C) n=x2x2+y2+z2i+y2x2+y2+z2j+z2x2+y2+z2k\vec { n } = \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \vec { i } + \frac { y ^ { 2 } } { \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \vec { j } + \frac { z ^ { 2 } } { \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \vec { k }
D) n=x16i+y16j+z16k\vec { n } = \frac { x } { 16 } \vec { i } + \frac { y } { 16 } \vec { j } + \frac { z } { 16 } \vec { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions