Solved

Let F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k }

Question 7

Essay

Let F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k } be a constant vector field and S be an oriented surface.
Show that SFdA(a2+b2+c2)( Area of S)\int _ { S } \vec { F } \cdot \vec { d A } \leq \left( \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } \right) ( \text { Area of } S )

Correct Answer:

verifed

Verified

Let blured image be the unit nor...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions