Solved

The Average Value of a Function G on 0 \le X \le

Question 2

Multiple Choice

The average value of a function g on 0 \le x \le 2 is a constant gˉ\bar{g} given by gˉ=12002g(d) dx\bar{g}=\frac{1}{2-0} \int_{0}^{2} g(d) d x .Also, 02(g(x) gˉ) 2dx0\int_{0}^{2}(g(x) -\bar{g}) ^{2} d x \geq 0 , since (g(x) gˉ) 2(g(x) -\bar{g}) ^{2} is a square.Which of the following must be true?


A) (02g(x) dx) 202(g(x) ) 2dx\left(\int_{0}^{2} g(x) d x\right) ^{2} \leq \int_{0}^{2}(g(x) ) ^{2} d x
B) (02g(x) dx) 202(g(x) ) 2dx\left(\int_{0}^{2} g(x) d x\right) ^{2} \geq \int_{0}^{2}(g(x) ) ^{2} d x
C) (02g(x) dx) 2=02(g(x) ) 2dx\left(\int_{0}^{2} g(x) d x\right) ^{2}=\int_{0}^{2}(g(x) ) ^{2} d x
D) None of these

Correct Answer:

verifed

Verified

Related Questions