Solved

Suppose abg(x)dx=6\int_{a}^{b} g(x) d x=6 ab(g(x))2dx=8\int_{a}^{b}(g(x))^{2} d x=8 abh(x)dx=0\int_{a}^{b} h(x) d x=0

Question 36

Short Answer

Suppose abg(x)dx=6\int_{a}^{b} g(x) d x=6 , ab(g(x))2dx=8\int_{a}^{b}(g(x))^{2} d x=8 , abh(x)dx=0\int_{a}^{b} h(x) d x=0 , and ab(h(x))2dx=2\int_{a}^{b}(h(x))^{2} d x=2 .Find ab((g(x))2+(h(x))2)dx\int_{a}^{b}\left((g(x))^{2}+(h(x))^{2}\right) d x .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions