Solved

Determine Whether the Point P Is in the Convex Hull

Question 23

Multiple Choice

Determine whether the point p is in the convex hull of S.
- S={v1,v2,v3,v4}v1=[221],v2=[031],v3=[186],v4=[124],p=[130]\begin{array} { l } S = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } , \mathbf { v } _ { 4 } \right\} \\\mathbf { v } _ { 1 } = \left[ \begin{array} { l } 2 \\2 \\1\end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } 0 \\3 \\- 1\end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 1 \\8 \\- 6\end{array} \right] , \mathbf { v } _ { 4 } = \left[ \begin{array} { r } - 1 \\2 \\4\end{array} \right] , \mathbf { p } = \left[ \begin{array} { l } 1 \\3 \\0\end{array} \right]\end{array}


A) pconvS.p=12v1+14v2+14v3\mathbf { p } \in \operatorname { conv } \mathrm { S } . \mathbf { p } = \frac { 1 } { 2 } \mathbf { v } _ { 1 } + \frac { 1 } { 4 } \mathbf { v } _ { 2 } + \frac { 1 } { 4 } \mathbf { v } _ { 3 }
B) pconv\mathbf { p } \in \operatorname { conv } S. p=12v1+14v2+18v3+18v4\mathbf { p } = \frac { 1 } { 2 } \mathbf { v } _ { 1 } + \frac { 1 } { 4 } \mathbf { v } _ { 2 } + \frac { 1 } { 8 } \mathbf { v } _ { 3 } + \frac { 1 } { 8 } \mathbf { v } _ { 4 }
C) p\mathbf { p } \in conv S. p=2v1+3v22v32v4\mathbf { p } = 2 \mathbf { v } _ { 1 } + 3 \mathbf { v } _ { 2 } - 2 \mathbf { v } _ { 3 } - 2 \mathbf { v } _ { 4 }
D) p\mathbf { p } \notin conv S\mathrm { S } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions