Solved

-Suppose B={b1,b2,b3}B = \left\{ b _ { 1 } , b _ { 2 } , b _ { 3 } \right\}

Question 10

Multiple Choice

 Find the matrix of the linear transformation T:VW relative to B and C\text { Find the matrix of the linear transformation } \mathrm { T } : \mathrm { V } \rightarrow \mathrm { W } \text { relative to } \mathrm { B } \text { and } \mathrm { C } \text {. }
-Suppose B={b1,b2,b3}B = \left\{ b _ { 1 } , b _ { 2 } , b _ { 3 } \right\} is a basis for VV and C={c1,c2}C = \left\{ c _ { 1 } , c _ { 2 } \right\} is a basis for WW . Let TT be defined by
T(b1) =3c1+c2 T(b2) =8c18c2 T(b3) =3c1+2c2\begin{array} { l } \mathrm { T } \left( \mathbf { b } _ { 1 } \right) = 3 \mathbf { c } _ { 1 } + \mathrm { c } _ { 2 } \\\mathrm {~T} \left( \mathbf { b } _ { 2 } \right) = 8 \mathbf { c } _ { 1 } - 8 \mathbf { c } _ { 2 } \\\mathrm {~T} \left( \mathbf { b } _ { 3 } \right) = 3 \mathbf { c } _ { 1 } + 2 \mathbf { c } _ { 2 }\end{array}


A)
[405182]\left[ \begin{array} { r r r } 4 & 0 & 5 \\ 1 & - 8 & 2 \end{array} \right]

B)
[383182]\left[ \begin{array} { r r r } 3 & 8 & 3 \\ 1 & - 8 & 2 \end{array} \right]

C)
[318832]\left[ \begin{array} { r r } 3 & 1 \\ 8 & - 8 \\ 3 & 2 \end{array} \right]

D)

[348035]\left[ \begin{array} { l l } 3 & 4 \\ 8 & 0 \\ 3 & 5 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions