Solved

Diagonalize the Matrix A, If Possible A=PDP1A = P D P^{ - 1}

Question 14

Multiple Choice

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that
A=PDP1A = P D P^{ - 1}
- A=[200120002]A = \left[ \begin{array} { l l l } 2 & 0 & 0 \\1 & 2 & 0 \\0 & 0 & 2\end{array} \right]


A) P=[100220011],D=[210020002]P = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 1 \end{array} \right] , D = \left[ \begin{array} { l l l } 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right]
B)
P=[101220111],D=[201121002]P = \left[ \begin{array} { r r r } 1 & 0 & - 1 \\2 & 2 & 0 \\1 & 1 & 1\end{array} \right] , D = \left[ \begin{array} { l l l } 2 & 0 & 1 \\1 & 2 & 1 \\0 & 0 & 2\end{array} \right]
C) Not diagonalizable
D)
P=[121021101],D=[200020002]\mathrm { P } = \left[ \begin{array} { r r r } 1 & 2 & 1 \\0 & 2 & 1 \\- 1 & 0 & 1\end{array} \right] , \mathrm { D } = \left[ \begin{array} { l l l } 2 & 0 & 0 \\0 & 2 & 0 \\0 & 0 & 2\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions