Solved

Diagonalize the Matrix A, If Possible A=PDP1A = P D P^{ - 1}

Question 12

Multiple Choice

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that
A=PDP1A = P D P^{ - 1}
- A=[6000060014601206]A = \left[ \begin{array} { r r r r } 6 & 0 & 0 & 0 \\0 & 6 & 0 & 0 \\1 & - 4 & - 6 & 0 \\- 1 & 2 & 0 & - 6\end{array} \right]


A) P=[122400660010100101],D=[6000060000600006]P = \left[ \begin{array} { r r r r } - 12 & - 24 & 0 & 0 \\ 6 & 6 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right] , D = \left[ \begin{array} { r r r r } - 6 & 0 & 0 & 0 \\ 0 & - 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right]


B) P=[126102460000100001],D=[6000060000600006]P = \left[ \begin{array} { r r r r } - 12 & 6 & 1 & 0 \\ - 24 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] , D = \left[ \begin{array} { r r r r } - 6 & 0 & 0 & 0 \\ 0 & - 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right]

C) Not diagonalizable

D)
P=[122400660010100101],D=[6000060000600006]P = \left[ \begin{array} { r r r r } - 12 & - 24 & 0 & 0 \\- 6 & - 6 & 0 & 0 \\1 & 0 & 1 & 0 \\0 & 1 & 0 & 1\end{array} \right] , D = \left[ \begin{array} { r r r r } 6 & 0 & 0 & 0 \\0 & 6 & 0 & 0 \\0 & 0 & - 6 & 0 \\0 & 0 & 0 & - 6\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions